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ABSTRACT: The comparative analysis of power of classical variance homogeneity tests
(Fisher’s, Bartlett’s, Cochran’s, Hartley’s and Levene’s tests) is carried out. Distributions of
tests statistics are investigated under violation of assumptions that samples belong to the nor-
mal law. Distributions and power of nonparametric tests of homogeneity of dispersion charac-
teristics are researched (Ansari-Bradley’s, Mood’s, Siegel-Tukey’s tests). The comparative
analysis of power of classical variance homogeneity tests with power of nonparametric tests is
carried out. Tables of percentage points for Cochran’s test are presented in case of the distribu-

tions which are different from normal.
1 INTRODUCTION

Tests of samples homogeneity are often used
in various applications of statistical analysis.
The question can be about checking hypo-
theses about homogeneity of samples distri-
butions, population means or variances. Na-
turally the most complete findings can be
done in the first case. However researcher
can be interested in possible deviations in
the sample mean values or differences in
dispersion characteristics of measurements
results.

Application features of nonparametric
Smirnov and Lehmann-Rosenblatt homo-
geneity tests and analysis of their power
were considered in (Lemeshko & Lemeshko
(2005)). In (Lemeshko & Lemeshko (2008))
it was shown that classical criteria for testing
hypotheses about homogeneity of means are
stable to violation of normality assumption
and comparative analysis of the power of
various tests, including nonparametric, was
given.

One of the basic assumptions in con-
structing classical tests for equality of va-
riances is normal distribution of observable
random variables (measurement errors).
Therefore the application of classical criteria
always involves the question of how valid
the results obtained are in this particular sit-
uation. Under violation of assumption that
analyzed variables belong to normal law,

conditional distributions of tests statistics,

when hypothesis under test is true, change

appreciably.

All available publications do not give full
information on the power of the classical
tests for homogeneity of variances and on
comparative analysis of the power of the
classical tests and nonparametric criteria for
testing hypotheses about the homogeneity of
the dispersion characteristics (scale parame-
ters).

This work continues researches of stabili-
ty of criteria for testing hypotheses about the
equality of variances (Lemeshko & Mirkin
(2004)). Classical Bartlett’s  (Bartlett
(1937)), Cochran’s (Cochran (1941)), Fish-
er’s, Hartley’s (Hartley (1950)), Levene’s
(Levene (1960)) tests have been compared,
nonparametric (rank) Ansari-Bradley’s (An-
sari & Bradley (1960)), Mood’s (Mood
(1954)), Siegel-Tukey’s (Siegel & Tukey
(1960)) tests have been considered. The pur-
pose of the paper is
— research of statistics distributions for

listed tests in case of distribution laws of

observable random variables which are
different from normal,

— comparative analysis of criteria power
concerning concrete competing hypothes-
es;

— realization of the possibility to apply the
classical tests under violation of assump-
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tions about normality of random va-

riables.

A hypothesis under test for equality of va-
riances corresponding to m samples will
have the form

Hy:ol =0, =..=0}, (1)
and the competitive hypothesis is
H,:0f =07, )

where the inequality holds at least for one
pair of subscripts i,,i,.

Statistical simulation methods and the
developed software have been used for in-
vestigating statistic distributions, calculating
percentage points and estimating tests power
with respect to various competing hypothes-
es. The sample size of statistics under study
was N =10°. Such N allowed absolute val-
ue of difference between true law of statis-
tics distribution and simulated empirical not
to exceed 10°7°.

Statistic distributions have been studied
for various distribution laws, in particular, in
case when simulated samples belong to the

family with density
00 oo [1x=0:)"| )
20,06, P | e,

with various values of the form parameter
6,. This family can be a good model for er-
ror distributions of various measuring sys-
tems. Special cases of distribution De(6,)

include the Laplace (0, =1) and normal

(6, = 2) distribution. The family (3) allows
to define various symmetric distributions
that differ from normal: the smaller value of
form parameter 6, the "heavier" tails of the

distribution De(6,), and vice-versa the
higher value the "easier" tails.

The competing hypotheses of the form
H,:0,=do, have been considered in
comparative analysis of the test power. That
is, a competing hypothesis corresponds to
the situation when m—1 samples belong to
the law with o = o,, while one of the sam-

De(8,) = T(x;0,,6,,0,) =

ples, for example, with number m has some
different variance. Hypothesis under test cor-
responds to the situation

2 2 _
Hy:00 =0, =..=0

2 CLASSICAL TESTS OF VARIANCES
HOMOGENEITY

2.1 Bartlett’s test
Bartlett's test statistic (Bartlett (1937)) is

BM{

where

M =N |n(1§m:visﬁj—ivi Ins?,
N i=1 i=1

m is the number of samples; n, are the
sample sizes; v, =n,, if mathematical expec-
tation is known, and v, =n, -1, if it is un-
known;

S? — estimators of the sample variances. If

the mathematical expectation is unknown,
the estimators are

1 &
S2=—>" (X -
ni—ljz_;‘ ‘

where X; — j-th observation in sample i,

Zx

|J1

If hypothesis H, is true, all v; >3 and
samples are extracted from a normal popula-
tion, then the statistic (4) has approximately
the yZ2_, distribution. If measurements are
normally distributed, the distribution for the
statistic (4) is almost independent of the
sample sizes n, (Lemeshko & Mirkin
(2004)). If distributions of observed va-
riables differ from the normal law, the dis-



tribution G(B|H,) of statistic (4) becomes
depending on n, and differs from 47 ..
2.2 Cochran’s test

When all n, are equal, one can use simpler

Cochran’s test (Cochran (1941)). The test
statistic Q is defined as follows:

SZ
Q max , (5)

SZ+S2+..+87

where S’ =max(S?,S5,...,S2), m is
the number of independent estimators of va-
riances (number of samples), S are estima-

tors of the sample variances.

Distribution of Cochran’s test statistic
strongly depends on the sample size. The
reference literature gives only tables of the
percentage points for limited number of val-
ues n, which are used in hypothesis testing.

2.3 Hartley’s test

Hartley’s test (Hartley (1950)) as well as
Cochran’s test is used in case of samples of
equal size.

Hartley’s test statistic for homogeneity of
variances is

SZ
H= S’;‘_’X , (6)
where

2 =min(S%,SZ,...,S2),
m — number of independent estimators of
variances (number of samples).

Literature gives tables of percentage
points for distribution of statistic (6) depend-
ingon v;=m and v, =n-1.

S2,. =max(S?,S?,...,.S2), S?

2.4 Levene’s test

The Levene’s test statistic (Levene (1960)) is
defined as:

Sn(Z. - Z..)
E NG

m-1 ZZ(ZU _ Z_i.)z

W:N—m

where m is the number of samples, n, is the
sample size of the i-th sample,

N=>n,

i=1
Z; =|X; - X..|, Xy —j-th observation in
samplei, X, is the mean of i-th sample, Z,,

is the mean of the Z;; for sample i, Z.. —the
mean of all Z;;.

In some descriptions of the test, it is said
that in case when samples belong to the
normal law and hypothesis H, is true, the

statistic has a F,_ - distribution with num-

ber of degrees of freedom v,=m-1
andv, = N —m. Actually distribution of sta-
tistics (7) is not Fisher's distribution F, .

Therefore percentage points of distribution
were investigated using statistical simulation
methods (Neel & Stallings (1974)).

Levene’s test is less sensitive to depar-
tures from normality. However it has less
power.

The original Levene’s test used only sam-
ple means. Brown and Forsythe (Brownl &
Forsythe (1974)) suggested using sample
median and trimmed mean as estimators of
the mean for statistic (7).

However our researches have shown that
using in (7) sample median and trimmed
mean leads to another distribution
G(W | H,) of statistics (7).

2.5 Fisher’s test

Fisher’s test is used to check hypothesis of
variances homogeneity for two samples of
random variables. The test statistic has a
simple form

2

F=2, (®)
SZ

where s’ and s. — unbiased variance esti-

mators, computed from the sample data.
In case when samples belong to the nor-

mal law and hypothesis H,:c7 =07 is



true, this statistic has the F, , -distribution
with number of degrees of freedom
v,=n -1 andv; =n,—-1. A hypothesis un-
der test is rejected if F <F or

al2,vy,v,
*
F < |:1—o:/2,vl,v2

3 NONPARAMETRIC (RANK) TESTS
3.1 Ansari-Bradley’s test

Nonparametric analogues of tests for homo-
geneity of variances are used to check hypo-
thesis that two samples with sample sizes n,

and n, belong to population with identical

characteristics of dispersion. As a rule equal-
ity of means is supposed.
The Ansari-Bradley’s test statistic (Ansari
& Bradley (1960)) is:
} (9)

5 :{i n, +n, +1_‘Ri n+n,+1
2 2
where R, - ranks corresponding to elements
of the first sample in general variational row.
In case when samples belong to the same
law and checked hypothesis H, is true, dis-
tribution of statistics (9) does not depend on
this law. Discreteness of distribution of sta-
tistics (9) can be practically neglected when
n,n, >40.

3.2 Siegel-Tukey’s test

The variational row constructed on general
sample x, <X, <..<X,, where n=n,+n,,
is transformed into such sequence

Xir Xns Xn11 Xo0 Xgs Xo gy Xngy Xgs X5y

1.e. row of remained values is “turned over”
each time when ranks are assigned to pair of
extreme values. Sum of ranks of sample with
smaller size is used as test statistics. When
n, <n, test statistic (Siegel & Tukey (1960))

is defined as:

R:iRi, (10)

Discreteness of distribution of statistics
(10) can be practically neglected when
n,n, >30.

3.3 Mood'’s test
The test statistic (Mood (1954)) is:

& n+n,+1 ?
M:Z_ll R-=——1 (11)

where R; - ranks of sample with smaller size

in general variational row. Discreteness of
distribution of statistics (11) can be neg-
lected at all when n;,n, > 20.

When sample sizes n,n, >10 discrete

distributions of statistics (9), (10) and (11)
are well enough approximated by normal
law. Therefore instead of statistics (9), (10)
and (11) normalized analogues are more of-
ten used, which are approximately standard
normal.

4 COMPARATIVE ANALYSIS OF
POWER

At given probability of type I error « (to re-
ject the null hypothesis when it is true) it is
possible to judge advantages of the test by
value of power 1— £, where fis the proba-
bility of type Il error (not to reject the null
hypothesis when alternative is true). In
(Bol’shev & Smirnov (1983)) it is definitely
said that Cochran’s test has lower power in
comparison with Bartlett’s test. In (Lemesh-
ko & Mirkin (2004)) it was shown that
Cochran’s test has greater power by the ex-
ample of checking hypothesis about va-
riances homogeneity for five samples.
Research of power of Bartlett’s, Coch-
ran’s, Hartley’s, Fisher’s and Levene’s tests
concerning such competing hypotheses
H,:0,=do,,d #1 (in case of two samples

that belong to the normal law) has shown
that Bartlett’s, Cochran’s, Hartley’s and
Fisher’s tests have equal power in this case.
Levene’s test appreciably yields to them in
power.

In case of the distributions which are dif-
ferent from normal, for example, family of



distributions with density (3), Bartlett’s,
Cochran’s, Hartley’s and Fisher’s tests re-
main equivalent in power, and Levene’s test
also appreciably yields to them. However in
case of heavy-tailed distributions (for exam-
ple, when samples belong to the Laplace dis-
tribution) Levene’s test has advantage of
greater power.

Bartlett’s, Cochran’s, Hartley’s and Le-
vene’s tests can be applied when number of
samples m > 2. In such situations power of
these tests is different. If m > 2 and normali-
ty assumption is true, given tests can be or-
dered by power decrease as follows:
Cochran’s > Bartlett’s > Hartley’s > Le-
vene'’s.

The preference order remains in case of
violation of normality assumption. The ex-
ception concerns situations when samples
belong to laws with more “heavy tails” in
comparison with the normal law. For exam-
ple, in case of Laplace distribution Levene’s
test is more powerful than three others.

Results of nonparametric criteria power
research have shown appreciable advantage
of Mood’s test and practical equivalence of
Siegel-Tukey’s and Ansari-Bradley’s tests.
Of course, nonparametric tests yield in pow-
er to Bartlett’s, Cochran’s, Hartley’s and
Fisher’s tests. Figure 1 shows graphs of cri-
teria power concerning competing hypothes-
es H}:0,=11c, and H?:c, =150, de-
pending on sample size n, in case when

a =0.1 and samples belong to the normal
law. As we see, advantage in power of Coch-
ran’s test is rather significant in comparison
with Mood’s test - most powerful of nonpa-
rametric tests. Let's remind that Bartlett’s,
Cochran’s, Hartley’s and Fisher’s tests have
equal power in case of two samples.
Distributions of nonparametric tests sta-
tistics do not depend on a law kind, if both
samples belong to the same population. But
if samples belong to different laws and hypo-
thesis of variances equality H, is true, dis-

tributions of statistics of nonparametric tests
depend on a kind of these laws.

‘ -5 Cochran ——Levene  —8Mood — —#— Ansan-Bradley |

Figure 1. Power of tests concerning competing hypo-
theses Hl1 and Hf depending on sample size N
when o = 0.1 and samples belong to normal law.

5 COCHRAN’S TEST IN CASE OF
LAWS DIFFERENT FROM NORMAL

Classical tests have considerable advantage
in power over nonparametric. This advan-
tage remains when analyzed samples belong
to the laws appreciably different from nor-
mal. Therefore there is every reason to re-
search statistics distributions of classical
tests for checking variances homogeneity
(construction of distributions models or
tables of percentage points) in case of laws
most often used in practice (different from
the normal law). Among considered tests
Cochran’s test is the most suitable for this
role.

In case when observable variables belong
to family of distributions (3) with parameter
of the form 6, =1,2,3,4,5 and some values

n, tables 1-4 of upper percentage points
(1%, 5%, 10%) for Cochran’s test were ob-
tained using statistical simulation (when
number of samples m=2-+5). The results
obtained can be used in situations when dis-
tribution (3) with appropriate parameter 6,

is a good model for observable random va-
riables. Computed percentage points im-
prove some results presented in (Lemeshko
& Mirkin (2004)) and expand possibilities to
apply Cochran’s test.



Table 1. Upper percentage points for Cochran’s test statistic distribution in case of 2 samples with equal size N

De() De(2) De(3) De(4) De(5)
n o o o o o

01 005 001 01 005 00l 01 005 00l 01 005 00l 01 005 001
5 0917 0947 0980 0.865 0906 0959 0.845 0.890 0950 0.836 0.883 00947 0831 0879 0945
8 0.862 0900 0949 0791 0.833 0.899 0.764 0.807 0877 0751 0794 0866 0744 0787 0.861
10 0836 0875 0930 0761 0801 0868 0733 0773 0842 0720 0759 0829 0713 0751 0.822
15 0789 0829 0890 0713 0748 0811 0686 0719 0780 0674 0706 0765 0.667 0.698 0.757
20 0759 0797 0858 0684 0716 0774 0660 0689 0743 0648 0676 0728 0642 0.669 0.720
25 073 0772 0834 0665 0694 0748 0642 0668 0717 0632 0656 0703 0.626 0.649 0.695
30 0718 0753 0814 0650 0677 0727 0629 0653 0699 0619 0642 0685 0614 0635 0.677
40 0693 0725 0782 0630 0654 0699 0611 0632 0672 0603 0622 0660 0598 0616 0.653
50 0674 0704 0758 0617 0638 0679 0599 0618 0654 0591 0.609 0.642 0587 0.604 0.636
60  0.660 0689 0740 0606 0626 0664 0591 0608 0640 0583 0599 0630 0579 0594 0.624
70 0649 0676 0724 0598 0617 0652 0584 0599 0630 0577 0591 0620 0573 0587 0614
80 0640 0665 0712 0592 0609 0642 0578 0593 0621 0572 0585 0612 0568 0581 0.607
90 0632 0657 0701 0587 0603 0634 0573 0587 0614 0567 0580 0605 0564 0576 0.600
100 0626 0649 0692 0582 0598 0628 0570 0583 0609 0564 0576 0600 0561 0572 0595

Table 2. Upper percentage points for Cochran’s test statistic distribution in case of 3 samples with equal size N

De(d) De(2) De(3) De(4) De(5)
n a a a o a

0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01
5 0.794 0.847 0918 0.700 0.752 0.839 0.665 0.717 0.806 0.649 0.700 0.790 0.641 0.690 0.781
8 0.716 0.768 0.852 0.614 0.658 0.741 0579 0.620 0.698 0.563 0.602 0.677 0.554 0.591 0.665
10 0.681 0.732 0.817 0581 0.622 0.698 0548 0584 0.654 0533 0567 0634 0524 0557 0.622
15 0623 0669 0.751 0531 0564 0.628 0503 0531 0588 0489 0516 0569 0482 0508 0.558
20 0.587 0.629 0.707 0502 0531 0588 0477 0501 0550 0466 0488 0533 0459 0480 0.524
25 0.562 0.600 0.673 0.484 0509 0560 0461 0482 0526 0450 0470 0510 0.444 0.463 0.501
30 0.543 0578 0.647 0470 0493 0539 0449 0468 0507 0439 0457 0493 0434 0451 0.485
40 0.515 0547 0.608 0.450 0470 0510 0432 0449 0482 0424 0439 0470 0419 0434 0.463
50 0.496 0525 0581 0437 0455 0490 0421 0436 0465 0414 0427 0454 0410 0422 0.448
60 0.482 0508 0560 0.428 0444 0476 0413 0426 0453 0406 0418 0.443 0402 0414 0437
70 0471 0495 0543 0421 0435 0465 0407 0419 0444 0401 0412 0434 0397 0408 0.429
80 0.462 0485 0530 0415 0429 0456 0402 0413 0436 0.396 0406 0427 0.393 0403 0422
90 0.455 0476 0518 0410 0423 0449 0.398 0408 0430 0.392 0402 0422 0.389 0.398 0417
100 0.449 0469 0509 0.406 0418 0443 0.394 0405 0425 0.389 0.398 0417 0.386 0.395 0413




Table 3. Upper percentage points for Cochran’s test statistic distribution in case of 4 samples with equal size N

De(d) De(2) De(3) De(4) De(5)
n a a a a o

0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01
5 0696 0.755 0.848 0584 0.634 0.727 0545 0591 0679 0527 0571 0656 0517 0560 0.643
8 0611 0666 0.761 0501 0541 0.619 0466 0.500 0569 0450 0.482 0546 0441 0471 0.533
10 0575 0.626 0.720 0470 0.506 0576 0438 0468 0529 0423 0451 0507 0415 0441 0.495
15 0.517 0561 0.646 0424 0453 0510 0397 0421 0468 038 0406 0450 0378 0.398 0.439
20 0.482 0521 0598 0399 0422 0471 0375 0395 0435 0364 0382 0419 0358 0375 0.410
25 0.457 0493 0563 0.382 0403 0445 0360 0378 0413 0351 0366 0.398 0346 0.360 0.390
30 0439 0471 0536 0369 0.388 0427 0350 0365 0397 0341 0355 0.384 0336 0349 0.377
40 0.413 0441 0498 0352 0368 0401 0335 0348 0348 0328 0340 0.364 0324 0335 0.358
50 0.395 0420 0470 0340 0355 0384 0326 0337 0361 0319 0329 0351 0315 0325 0.345
60 0.382 0404 0451 0332 0345 0371 0319 0329 0350 0313 0322 0341 0309 0318 0.336
70 0372 0392 0435 0326 0337 0361 0313 0323 0342 0308 0316 0334 0305 0313 0.329
80 0.364 0383 0422 0320 0331 0354 0309 0318 0336 0304 0312 0328 0301 0309 0.324
90 0.357 0375 0412 0316 0326 0.348 0305 0314 0331 0300 0.308 0.324 0.298 0.305 0.320
100 0.352 0368 0403 0313 0.322 0.342 0302 0.310 0327 0.298 0305 0.320 0.295 0.302 0.316

Table 4. Upper percentage points for Cochran’s test statistic distribution in case of 5 samples with equal size N

De(l) De(2) De(3) De(4) De(5)
n o o o o o

01 005 001 01 005 001 01 005 001 01 005 001 01 005 001
5 0623 0684 0787 0504 0551 0642 0464 0505 0588 0446 0484 0562 0436 0472 0548
8 0537 0591 0690 0426 0461 0533 0392 0421 0482 0376 0403 0458 0367 0393 0.446
10 0501 0550 0645 0397 0428 0491 0366 0392 0444 0352 0375 0422 0344 0366 0411
15 0445 0485 0567 0355 0379 0429 0330 0349 039 0318 0336 0372 0312 0329 0.363
20 0412 0447 0520 0332 0352 0394 0310 0326 0360 0300 0315 0345 0295 0308 0.337
25 0388 0420 0485 0316 0334 0371 0297 0311 0341 0288 0301 0328 0283 0295 0.320
30 0370 0399 0459 0305 0321 0354 0287 0300 0327 0279 0291 0315 0275 0286 0.308
40 0347 0371 0371 0290 0303 0331 0275 0285 0308 0268 0278 0298 0264 0273 0292
50 0330 0352 0397 0280 0291 0316 0266 0276 0295 0260 0269 0286 0257 0265 0.281
60 0318 0337 0378 0272 0283 0304 0220 0227 0242 0254 0262 0278 0252 0259 0274
70 0309 0326 0363 0266 0276 0296 0255 0263 0279 0250 0257 0272 0247 0254 0.268
80 0301 0318 0352 0262 0271 0289 0251 0259 0274 0247 0253 0267 0244 0250 0.263
90 0205 0310 0342 0258 0266 0284 0248 0255 0269 0244 0250 0263 0242 0247 0259
100 0290 0304 0334 0255 0263 0279 0246 0252 0265 0242 0247 0259 0239 0245 0.256
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