
1 INTRODUCTION 
 
Tests of samples homogeneity are often used 
in various applications of statistical analysis. 
The question can be about checking hypo-
theses about homogeneity of samples distri-
butions, population means or variances. Na-
turally the most complete findings can be 
done in the first case. However researcher 
can be interested in possible deviations in 
the sample mean values or differences in 
dispersion characteristics of measurements 
results. 

Application features of nonparametric 
Smirnov and Lehmann-Rosenblatt homo-
geneity tests and analysis of their power 
were considered in (Lemeshko & Lemeshko 
(2005)). In (Lemeshko & Lemeshko (2008)) 
it was shown that classical criteria for testing 
hypotheses about homogeneity of means are 
stable to violation of normality assumption 
and comparative analysis of the power of 
various tests, including nonparametric, was 
given. 

One of the basic assumptions in con-
structing classical tests for equality of va-
riances is normal distribution of observable 
random variables (measurement errors). 
Therefore the application of classical criteria 
always involves the question of how valid 
the results obtained are in this particular sit-
uation. Under violation of assumption that 
analyzed variables belong to normal law, 

conditional distributions of tests statistics, 
when hypothesis under test is true, change 
appreciably. 

All available publications do not give full 
information on the power of the classical 
tests for homogeneity of variances and on 
comparative analysis of the power of the 
classical tests and nonparametric criteria for 
testing hypotheses about the homogeneity of 
the dispersion characteristics (scale parame-
ters). 

This work continues researches of stabili-

ty of criteria for testing hypotheses about the 

equality of variances (Lemeshko & Mirkin 

(2004)). Classical Bartlett’s (Bartlett 

(1937)), Cochran’s (Cochran (1941)), Fish-

er’s, Hartley’s (Hartley (1950)), Levene’s 

(Levene (1960)) tests have been compared, 

nonparametric (rank) Ansari-Bradley’s (An-

sari & Bradley (1960)), Mood’s (Mood 

(1954)), Siegel-Tukey’s (Siegel & Tukey 

(1960)) tests have been considered. The pur-

pose of the paper is 
 research of statistics distributions for 

listed tests in case of distribution laws of 
observable random variables which are 
different from normal; 

 comparative analysis of criteria power 
concerning concrete competing hypothes-
es; 

 realization of the possibility to apply the 
classical tests under violation of assump-
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tions about normality of random va-
riables.  

A hypothesis under test for equality of va-

riances corresponding to m  samples will 

have the form 
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10 ...: mH , (1) 

and the competitive hypothesis is 
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1 21
: iiH , (2) 

where the inequality holds at least for one 

pair of subscripts 21 , ii . 

Statistical simulation methods and the 

developed software have been used for in-

vestigating statistic distributions, calculating 

percentage points and estimating tests power 

with respect to various competing hypothes-

es. The sample size of statistics under study 

was 610N . Such N  allowed absolute val-

ue of difference between true law of statis-

tics distribution and simulated empirical not 

to exceed 310 . 

Statistic distributions have been studied 

for various distribution laws, in particular, in 

case when simulated samples belong to the 

family with density 
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with various values of the form parameter 

0 . This family can be a good model for er-

ror distributions of various measuring sys-

tems. Special cases of distribution 0( )De  

include the Laplace 0( 1)  and normal 

0( 2)  distribution. The family (3) allows 

to define various symmetric distributions 

that differ from normal: the smaller value of 

form parameter 0  the "heavier" tails of the 

distribution 0( )De , and vice-versa the 

higher value the "easier" tails. 

The competing hypotheses of the form 

01 : dH m  have been considered in 

comparative analysis of the test power. That 

is, a competing hypothesis corresponds to 

the situation when 1m  samples belong to 

the law with 0 , while one of the sam-

ples, for example, with number m  has some 

different variance. Hypothesis under test cor-

responds to the situation 
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2 CLASSICAL TESTS OF VARIANCES 
HOMOGENEITY 

2.1 Bartlett’s test 

Bartlett's test statistic (Bartlett (1937)) is  
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m  is the number of samples; in  are the 
sample sizes; ii n , if mathematical expec-
tation is known, and 1ii n , if it is un-
known;  

m

i

iN
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2

iS  – estimators of the sample variances. If 

the mathematical expectation is unknown, 

the estimators are  
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where ijX  – j -th observation in sample i , 
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If hypothesis 0H  is true, all 3i  and 

samples are extracted from a normal popula-

tion, then the statistic (4) has approximately 

the 2

1m  
distribution. If measurements are 

normally distributed, the distribution for the 

statistic (4) is almost independent of the 

sample sizes in  (Lemeshko & Mirkin 

(2004)). If distributions of observed va-

riables differ from the normal law, the dis-



tribution 0( | )G B H  of statistic (4) becomes 

depending on in  and differs from 2

1m . 

2.2 Cochran’s test 

When all in  are equal, one can use simpler 

Cochran’s test (Cochran (1941)). The test 

statistic Q is defined as follows: 
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where 
2 2 2 2

max 1 2max( , ,..., )mS S S S , m  is 

the number of independent estimators of va-

riances (number of samples), 2

iS  are estima-

tors of the sample variances. 

Distribution of Cochran’s test statistic 

strongly depends on the sample size. The 

reference literature gives only tables of the 

percentage points for limited number of val-

ues n , which are used in hypothesis testing. 

2.3 Hartley’s test 

Hartley’s test (Hartley (1950)) as well as 

Cochran’s test is used in case of samples of 

equal size.
 

Hartley’s test statistic for homogeneity of 

variances is  
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where 
2 2 2 2

max 1 2max( , ,..., )mS S S S , 2 2 2 2

min 1 2min( , ,..., )mS S S S , 

m  – number of independent estimators of 

variances (number of samples). 

Literature gives tables of percentage 

points for distribution of statistic (6) depend-

ing on mi  
and 12 n . 

2.4 Levene’s test 

The Levene’s test statistic (Levene (1960)) is 
defined as: 
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where m  is the number of samples, in  is the 
sample size of the i -th sample,  

m

i

inN
1

, 

iijij XXZ , ijX  – j -th observation in 

sample i , iX  is the mean of i -th sample, iZ  

is the mean of the ijZ  for sample i , Z  − the 

mean of all ijZ .  

In some descriptions of the test, it is said 

that in case when samples belong to the 

normal law and hypothesis 0H  is true, the 

statistic has a 
21 ,F - distribution with num-

ber of degrees of freedom 11 m
 

and mN2
. Actually distribution of sta-

tistics (7) is not Fisher's distribution 
21 ,F . 

Therefore percentage points of distribution 

were investigated using statistical simulation 

methods (Neel & Stallings (1974)). 

Levene’s test is less sensitive to depar-

tures from normality. However it has less 

power. 

The original Levene’s test used only sam-

ple means. Brown and Forsythe (Brownl & 

Forsythe (1974)) suggested using sample 

median and trimmed mean as estimators of 

the mean for statistic (7).  

However our researches have shown that 

using in (7) sample median and trimmed 

mean leads to another distribution 

0( | )G W H  of statistics (7). 

2.5 Fisher’s test 

Fisher’s test is used to check hypothesis of 
variances homogeneity for two samples of 
random variables. The test statistic has a 
simple form 
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where 
2

1s  and 
2

2s  – unbiased variance esti-

mators, computed from the sample data. 

In case when samples belong to the nor-

mal law and hypothesis  2

2

2

10 :H  is 



true, this statistic has the 
21 ,F -distribution 

with number of degrees of freedom 

111 n
 
and 121 n . A hypothesis un-

der test is rejected if 
21 ,,2/

* FF  or 

21 ,,2/1

* FF . 

3 NONPARAMETRIC (RANK) TESTS 

3.1 Ansari-Bradley’s test 

Nonparametric analogues of tests for homo-

geneity of variances are used to check hypo-

thesis that two samples with sample sizes 
1n  

and 2n  belong to population with identical 

characteristics of dispersion. As a rule equal-

ity of means is supposed. 
The Ansari-Bradley’s test statistic (Ansari 

& Bradley (1960)) is: 
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where iR  - ranks corresponding to elements 

of the first sample in general variational row. 

In case when samples belong to the same 

law and checked hypothesis 0H  is true, dis-

tribution of statistics (9) does not depend on 

this law. Discreteness of distribution of sta-

tistics (9) can be practically neglected when  

40, 21 nn . 

3.2 Siegel-Tukey’s test 

The variational row constructed on general 

sample nxxx ...21 , where 
21 nnn , 

is transformed into such sequence  

...,,,,,,,,, 54323211 xxxxxxxxx nnnn  

i.e. row of remained values is “turned over” 

each time when ranks are assigned to pair of 

extreme values. Sum of ranks of sample with 

smaller size is used as test statistics. When 

21 nn  test statistic (Siegel & Tukey (1960)) 

is defined as: 

1
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iRR , (10) 

Discreteness of distribution of statistics 

(10) can be practically neglected when  

30, 21 nn . 

3.3 Mood’s test 

The test statistic (Mood (1954)) is:  
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where iR  - ranks of sample with smaller size 

in general variational row. Discreteness of 

distribution of statistics (11) can be neg-

lected at all when 20, 21 nn . 

When sample sizes 10, 21 nn  discrete 

distributions of statistics (9), (10) and (11) 

are well enough approximated by normal 

law. Therefore instead of statistics (9), (10) 

and (11) normalized analogues are more of-

ten used, which are approximately standard 

normal. 

4 COMPARATIVE ANALYSIS OF 
POWER 

 
At given probability of type I error  (to re-
ject the null hypothesis when it is true) it is 
possible to judge advantages of the test by 
value of power 1 , where is the proba-
bility of type II error (not to reject the null 
hypothesis when alternative is true). In 
(Bol’shev & Smirnov (1983)) it is definitely 
said that Cochran’s test has lower power in 
comparison with Bartlett’s test. In (Lemesh-
ko & Mirkin (2004)) it was shown that 
Cochran’s test has greater power by the ex-
ample of checking hypothesis about va-
riances homogeneity for five samples. 

Research of power of Bartlett’s, Coch-

ran’s, Hartley’s, Fisher’s and Levene’s tests 

concerning such competing hypotheses 

1,: 121 ddH  (in case of two samples 

that belong to the normal law) has shown 

that Bartlett’s, Cochran’s, Hartley’s and 

Fisher’s tests have equal power in this case. 

Levene’s test appreciably yields to them in 

power. 
In case of the distributions which are dif-

ferent from normal, for example, family of 



distributions with density (3), Bartlett’s, 
Cochran’s, Hartley’s and Fisher’s tests re-
main equivalent in power, and Levene’s test 
also appreciably yields to them. However in 
case of heavy-tailed distributions (for exam-
ple, when samples belong to the Laplace dis-
tribution) Levene’s test has advantage of 
greater power.  

Bartlett’s, Cochran’s, Hartley’s and Le-
vene’s tests can be applied when number of 
samples 2m . In such situations power of 
these tests is different. If 2m  and normali-
ty assumption is true, given tests can be or-
dered by power decrease as follows: 
Cochran’s  Bartlett’s  Hartley’s  Le-
vene’s. 

The preference order remains in case of 
violation of normality assumption. The ex-
ception concerns situations when samples 
belong to laws with more “heavy tails” in 
comparison with the normal law. For exam-
ple, in case of Laplace distribution Levene’s 
test is more powerful than three others. 

Results of nonparametric criteria power 

research have shown appreciable advantage 

of Mood’s test and practical equivalence of 

Siegel-Tukey’s and Ansari-Bradley’s tests. 

Of course, nonparametric tests yield in pow-

er to Bartlett’s, Cochran’s, Hartley’s and 

Fisher’s tests. Figure 1 shows graphs of cri-

teria power concerning competing hypothes-

es 12

1

1 1.1:H  and 12

2

1 5.1:H  de-

pending on sample size in  in case when 

1.0  and samples belong to the normal 

law. As we see, advantage in power of Coch-

ran’s test is rather significant in comparison 

with Mood’s test - most powerful of nonpa-

rametric tests. Let's remind that Bartlett’s, 

Cochran’s, Hartley’s and Fisher’s tests have 

equal power in case of two samples. 

Distributions of nonparametric tests sta-

tistics do not depend on a law kind, if both 

samples belong to the same population. But 

if samples belong to different laws and hypo-

thesis of variances equality 0H  is true, dis-

tributions of statistics of nonparametric tests 

depend on a kind of these laws. 

 
 

Figure 1. Power of tests concerning competing hypo-

theses 
1

1H  and 
2

1H  depending on sample size n  

when 1.0  and samples belong to normal law. 

5 COCHRAN’S TEST IN CASE OF 
LAWS DIFFERENT FROM NORMAL 

 

Classical tests have considerable advantage 

in power over nonparametric. This advan-

tage remains when analyzed samples belong 

to the laws appreciably different from nor-

mal. Therefore there is every reason to re-

search statistics distributions of classical 

tests for checking variances homogeneity 

(construction of distributions models or 

tables of percentage points) in case of laws 

most often used in practice (different from 

the normal law). Among considered tests 

Cochran’s test is the most suitable for this 

role. 

In case when observable variables belong 

to family of distributions (3) with parameter 

of the form 5,4,3,2,10  and some values 

n , tables 1-4 of upper percentage points 

(1%, 5%, 10%) for Cochran’s test were ob-

tained using statistical simulation (when 

number of samples 52m ). The results 

obtained can be used in situations when dis-

tribution (3) with appropriate parameter 0  

is a good model for observable random va-

riables. Computed percentage points im-

prove some results presented in (Lemeshko 

& Mirkin (2004)) and expand possibilities to 

apply Cochran’s test.



Table 1. Upper percentage points for Cochran’s test statistic distribution in case of 2 samples with equal size n   
 

n  

(1)De  (2)De  (3)De  (4)De  (5)De  

     

0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 

5 0.917 0.947 0.980 0.865 0.906 0.959 0.845 0.890 0.950 0.836 0.883 0.947 0.831 0.879 0.945 

8 0.862 0.900 0.949 0.791 0.833 0.899 0.764 0.807 0.877 0.751 0.794 0.866 0.744 0.787 0.861 

10 0.836 0.875 0.930 0.761 0.801 0.868 0.733 0.773 0.842 0.720 0.759 0.829 0.713 0.751 0.822 

15 0.789 0.829 0.890 0.713 0.748 0.811 0.686 0.719 0.780 0.674 0.706 0.765 0.667 0.698 0.757 

20 0.759 0.797 0.858 0.684 0.716 0.774 0.660 0.689 0.743 0.648 0.676 0.728 0.642 0.669 0.720 

25 0.736 0.772 0.834 0.665 0.694 0.748 0.642 0.668 0.717 0.632 0.656 0.703 0.626 0.649 0.695 

30 0.718 0.753 0.814 0.650 0.677 0.727 0.629 0.653 0.699 0.619 0.642 0.685 0.614 0.635 0.677 

40 0.693 0.725 0.782 0.630 0.654 0.699 0.611 0.632 0.672 0.603 0.622 0.660 0.598 0.616 0.653 

50 0.674 0.704 0.758 0.617 0.638 0.679 0.599 0.618 0.654 0.591 0.609 0.642 0.587 0.604 0.636 

60 0.660 0.689 0.740 0.606 0.626 0.664 0.591 0.608 0.640 0.583 0.599 0.630 0.579 0.594 0.624 

70 0.649 0.676 0.724 0.598 0.617 0.652 0.584 0.599 0.630 0.577 0.591 0.620 0.573 0.587 0.614 

80 0.640 0.665 0.712 0.592 0.609 0.642 0.578 0.593 0.621 0.572 0.585 0.612 0.568 0.581 0.607 

90 0.632 0.657 0.701 0.587 0.603 0.634 0.573 0.587 0.614 0.567 0.580 0.605 0.564 0.576 0.600 

100 0.626 0.649 0.692 0.582 0.598 0.628 0.570 0.583 0.609 0.564 0.576 0.600 0.561 0.572 0.595 

 
 
 
Table 2. Upper percentage points for Cochran’s test statistic distribution in case of 3 samples with equal size n   

n  

(1)De  (2)De  (3)De  (4)De  (5)De  

     

0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 

5 0.794 0.847 0.918 0.700 0.752 0.839 0.665 0.717 0.806 0.649 0.700 0.790 0.641 0.690 0.781 

8 0.716 0.768 0.852 0.614 0.658 0.741 0.579 0.620 0.698 0.563 0.602 0.677 0.554 0.591 0.665 

10 0.681 0.732 0.817 0.581 0.622 0.698 0.548 0.584 0.654 0.533 0.567 0.634 0.524 0.557 0.622 

15 0.623 0.669 0.751 0.531 0.564 0.628 0.503 0.531 0.588 0.489 0.516 0.569 0.482 0.508 0.558 

20 0.587 0.629 0.707 0.502 0.531 0.588 0.477 0.501 0.550 0.466 0.488 0.533 0.459 0.480 0.524 

25 0.562 0.600 0.673 0.484 0.509 0.560 0.461 0.482 0.526 0.450 0.470 0.510 0.444 0.463 0.501 

30 0.543 0.578 0.647 0.470 0.493 0.539 0.449 0.468 0.507 0.439 0.457 0.493 0.434 0.451 0.485 

40 0.515 0.547 0.608 0.450 0.470 0.510 0.432 0.449 0.482 0.424 0.439 0.470 0.419 0.434 0.463 

50 0.496 0.525 0.581 0.437 0.455 0.490 0.421 0.436 0.465 0.414 0.427 0.454 0.410 0.422 0.448 

60 0.482 0.508 0.560 0.428 0.444 0.476 0.413 0.426 0.453 0.406 0.418 0.443 0.402 0.414 0.437 

70 0.471 0.495 0.543 0.421 0.435 0.465 0.407 0.419 0.444 0.401 0.412 0.434 0.397 0.408 0.429 

80 0.462 0.485 0.530 0.415 0.429 0.456 0.402 0.413 0.436 0.396 0.406 0.427 0.393 0.403 0.422 

90 0.455 0.476 0.518 0.410 0.423 0.449 0.398 0.408 0.430 0.392 0.402 0.422 0.389 0.398 0.417 

100 0.449 0.469 0.509 0.406 0.418 0.443 0.394 0.405 0.425 0.389 0.398 0.417 0.386 0.395 0.413 

 



Table 3. Upper percentage points for Cochran’s test statistic distribution in case of 4 samples with equal size n   

n  

(1)De  (2)De  (3)De  (4)De  (5)De  

     

0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 

5 0.696 0.755 0.848 0.584 0.634 0.727 0.545 0.591 0.679 0.527 0.571 0.656 0.517 0.560 0.643 

8 0.611 0.666 0.761 0.501 0.541 0.619 0.466 0.500 0.569 0.450 0.482 0.546 0.441 0.471 0.533 

10 0.575 0.626 0.720 0.470 0.506 0.576 0.438 0.468 0.529 0.423 0.451 0.507 0.415 0.441 0.495 

15 0.517 0.561 0.646 0.424 0.453 0.510 0.397 0.421 0.468 0.385 0.406 0.450 0.378 0.398 0.439 

20 0.482 0.521 0.598 0.399 0.422 0.471 0.375 0.395 0.435 0.364 0.382 0.419 0.358 0.375 0.410 

25 0.457 0.493 0.563 0.382 0.403 0.445 0.360 0.378 0.413 0.351 0.366 0.398 0.346 0.360 0.390 

30 0.439 0.471 0.536 0.369 0.388 0.427 0.350 0.365 0.397 0.341 0.355 0.384 0.336 0.349 0.377 

40 0.413 0.441 0.498 0.352 0.368 0.401 0.335 0.348 0.348 0.328 0.340 0.364 0.324 0.335 0.358 

50 0.395 0.420 0.470 0.340 0.355 0.384 0.326 0.337 0.361 0.319 0.329 0.351 0.315 0.325 0.345 

60 0.382 0.404 0.451 0.332 0.345 0.371 0.319 0.329 0.350 0.313 0.322 0.341 0.309 0.318 0.336 

70 0.372 0.392 0.435 0.326 0.337 0.361 0.313 0.323 0.342 0.308 0.316 0.334 0.305 0.313 0.329 

80 0.364 0.383 0.422 0.320 0.331 0.354 0.309 0.318 0.336 0.304 0.312 0.328 0.301 0.309 0.324 

90 0.357 0.375 0.412 0.316 0.326 0.348 0.305 0.314 0.331 0.300 0.308 0.324 0.298 0.305 0.320 

100 0.352 0.368 0.403 0.313 0.322 0.342 0.302 0.310 0.327 0.298 0.305 0.320 0.295 0.302 0.316 

 
 
 
Table 4. Upper percentage points for Cochran’s test statistic distribution in case of 5 samples with equal size n   

n  

(1)De  (2)De  (3)De  (4)De  (5)De  

     

0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 

5 0.623 0.684 0.787 0.504 0.551 0.642 0.464 0.505 0.588 0.446 0.484 0.562 0.436 0.472 0.548 

8 0.537 0.591 0.690 0.426 0.461 0.533 0.392 0.421 0.482 0.376 0.403 0.458 0.367 0.393 0.446 

10 0.501 0.550 0.645 0.397 0.428 0.491 0.366 0.392 0.444 0.352 0.375 0.422 0.344 0.366 0.411 

15 0.445 0.485 0.567 0.355 0.379 0.429 0.330 0.349 0.390 0.318 0.336 0.372 0.312 0.329 0.363 

20 0.412 0.447 0.520 0.332 0.352 0.394 0.310 0.326 0.360 0.300 0.315 0.345 0.295 0.308 0.337 

25 0.388 0.420 0.485 0.316 0.334 0.371 0.297 0.311 0.341 0.288 0.301 0.328 0.283 0.295 0.320 

30 0.370 0.399 0.459 0.305 0.321 0.354 0.287 0.300 0.327 0.279 0.291 0.315 0.275 0.286 0.308 

40 0.347 0.371 0.371 0.290 0.303 0.331 0.275 0.285 0.308 0.268 0.278 0.298 0.264 0.273 0.292 

50 0.330 0.352 0.397 0.280 0.291 0.316 0.266 0.276 0.295 0.260 0.269 0.286 0.257 0.265 0.281 

60 0.318 0.337 0.378 0.272 0.283 0.304 0.220 0.227 0.242 0.254 0.262 0.278 0.252 0.259 0.274 

70 0.309 0.326 0.363 0.266 0.276 0.296 0.255 0.263 0.279 0.250 0.257 0.272 0.247 0.254 0.268 

80 0.301 0.318 0.352 0.262 0.271 0.289 0.251 0.259 0.274 0.247 0.253 0.267 0.244 0.250 0.263 

90 0.295 0.310 0.342 0.258 0.266 0.284 0.248 0.255 0.269 0.244 0.250 0.263 0.242 0.247 0.259 

100 0.290 0.304 0.334 0.255 0.263 0.279 0.246 0.252 0.265 0.242 0.247 0.259 0.239 0.245 0.256 



6 ACKNOWLEDGMENTS 
 

This research was supported by the Russian 

Foundation for Basic Research (project no. 

09-01-00056a), by the Federal Agency for 

Education within the framework of the ana-

lytical domestic target program "Develop-

ment of the scientific potential of higher 

schools" and federal target program of the 

Ministry of Education and Science of the 

Russian Federation "Scientific and scientif-

ic-pedagogical personnel of innovative Rus-

sia". 

REFERENCES 

Ansari, A.R. & Bradley, R.A. 1960. Rank-tests for 
dispersions. AMS 31(4): 1174-1189. 

Bartlett, M.S. 1937. Properties of sufficiency of sta-
tistical tests. Proc. Roy. Soc. A(160): 268-287. 

Bol’shev, L.N. & Smirnov N.V. 1983. Tables of Ma-
thematical Statistics [in Russian]. Moscow: Nau-
ka. 

Brown, M.B. & Forsythe, A.B. 1974. Robust Tests 
for Equality of Variances. JASA 69: 364-367. 

Cochran, W.G. 1941. The distribution of the largest 
of a set of estimated variances as a fraction of 
their total. Annals of Eugenics 11: 47-52. 

Hartley, H.O. 1950. The maximum F-ratio as a short-
cut test of heterogeneity of variance. Biometrika 
37: 308-312. 

Lemeshko, B.Yu. & Lemeshko, S.B. 2005. Statistical 
distribution convergence and homogeneity test 
power for Smirnov and Lehmann–Rosenblatt tests 
Measurement Techniques 48(12): 1159-1166. 

Lemeshko, B.Yu. & Lemeshko, S.B. 2008. Power and 
robustness of criteria used to verify the homogene-
ity of means. Measurement Techniques 51(9): 
950-959. 

Lemeshko, B.Yu. & Mirkin, E.P. 2004. Bartlett and 
Cochran tests in measurements with probability 
laws different from normal. Measurement Tech-
niques 47(10): 960-968. 

Levene, H. 1960. Robust tests for equality of va-
riances. Contributions to Probability and Statis-
tics: Essays in Honor of Harold Hotelling: 278-
292. 

Mood, A. 1954. On the asymptotic efficiency of cer-
tain nonparametric tests. AMS 25: 514-522. 

Neel, J.H. & Stallings, W.M. 1974. A Monte Carlo 
Study of Levene`s Test of Homogeneity of Va-
riance: Empirical Frequencies of Type I Error in 
Normal Distributions (Paper presented at the An-
nual Meeting of the American Educational Re-
search Association Convention) 

Siegel, S. & Tukey, J.W. 1960. A nonparametric sum 
of rank procedure for relative spread in unpaired 
samples. JASA 55(291): 429-445. 

 


