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GENERAL PROBLEMS OF METROLOGY 
AND MEASUREMENT TECHNIQUE

CHI-SQUARE-TYPE TESTS FOR VERIFICATION 

OF NORMALITY

B. Yu. Lemeshko UDC 519.24

The application of the Pearson chi-square test for verifi cation of the normality of a sample is discussed. 

Tables of percentage points and models for the limiting statistical distributions are constructed. The powers 

of the Pearson and Nikulin–Rao–Robson chi-square tests are estimated relative to various competing 

hypotheses. A comparative analysis of the powers of a set of normality tests is given.

Keywords: Pearson test, Nikulin–Rao–Robson test, test power.

 The application of many classical methods and tests for verifi cation of statistical hypotheses is based on the assump-

tion that the random quantities being analyzed obey a normal law. Only when this assumption is satisfi ed is it possible to be 

sure that a correct statistical conclusion has been reached using a given test.

 Three groups of tests can be used to verify the hypothesis that a sample obeys a normal law. The use, advantages, and 

disadvantages of the special Shapiro–Wilk, Epps–Pulley, Frosini, Hegazi–Green, Spigelhalter, Geary, and David–Hartley–

Pearson tests are discussed in detail in [1–4]. The use of the nonparametric Kolmogorov, Cramer–Mises–Smirnov, Anderson–

Darling, Kuiper, and Watson tests of goodness-of-fi t for composite hypotheses is discussed in greatest detail in [3, 5] and their 

application to tests of normality, in particular, is discussed in [4]. The Kolmogorov test for normality was fi rst used in [6], 

the Cramer–Mises–Smirnov and Anderson–Darling tests were used for the same purpose in [7], the Kuiper and Watson tests 

in [8–10], and the Zhang test in [11]. Some disadvantages of the latter have been pointed out in [4].

 Chi-square-type tests are traditionally used to test hypotheses regarding the adherence of a given sample to a normal 

law. The Pearson χ2 test for composite hypotheses (including tests of normality) assumes that the unknown parameters of 

the distribution are estimated on the basis of grouped data, since when the estimates are made from an ungrouped sample the 

distributions of the test statistic differ greatly from χ2 distributions. For this reason, a number of modifi ed χ2-type goodness-

of-fi t tests have been proposed. The best known of these is the Nikulin–Rao–Robson test [12–14].

 Here we demonstrate the feasibility of using the Pearson χ2 test for goodness-of-fi t to a normal distribution with 

estimates of the parameters based on ungrouped data and use statistical modelling techniques to study the power of χ2-type 

tests relative to several competing laws. For studying the distributions of the statistics, the number of Monte-Carlo trials was 

set at 106, which ensures an error on the order of ±10–3 in estimating the probability distribution.

 The Pearson χ2 Test of Goodness-of-Fit. The procedure for hypothesis testing using χ2-type tests assumes group-

ing of an original sample X1, X2, ..., Xn of volume n. The domain of defi nition of the random variable is broken into k non-

overlapping intervals bounded by the points:

 x0 < x1 < ... < xk–1 <xk, 
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where x0, xk are the lower and upper boundaries of the domain of defi nition of the random variable. The number of observa-

tions ni in the ith interval is counted in accordance with this partition, and the probability of falling in this interval,

 Pi (θ) = f (x, θ)dx
xi−1

xi

∫ ,

corresponding to a theoretical distribution law with a density function ƒ(x, θ), where

 n = ni
i=1

k

∑ , Pi (θ)
i=1

k

∑ = 1

is calculated. Measurements of the deviations ni/n on Pi(θ) form the basis of the statistics used in χ2-type goodness-of-fi t tests.

 The statistic for the Pearson χ2 test is calculated using the formula

 Xn
2 = n

(ni / n − Pi (θ))
2

Pi (θ)i=1

k

∑ .  (1)

 When the simple test hypothesis H0 is true (i.e., all the parameters of the theoretical law are known) and n → ∞, this 

statistic obeys a Xr
2 distribution with r = k – 1 degrees of freedom. A Xr

2 distribution has the density

 g(s) = sr/2–1e–s/2/[2r/2Γ(r/2)],

where Γ(·) is the Euler gamma function.

 The test hypothesis H0 is not rejected if the attained level of signifi cance exceeds a specifi ed level of signifi cance α, 

i.e., if the following inequality holds:

 P{Xn
2 > Xn

2*} = 1

2r /2Γ(r / 2)
sr /2−1e−s/2 ds

Xn
2*

∞

∫ > α,

where Xn
2* is the statistic calculated in Eq. (1).

 For testing a composite hypothesis and the validity of H0 under conditions such that an estimate of the parameters is 

obtained by minimizing the statistic Xn
2 based on the same sample, this statistic obeys a Xr

2 distribution asymptotically with 

r = k – m – 1 degrees of freedom, where m is the number of parameters to be estimated. The statistic Xn
2 has the same distri-

bution if the estimate is obtained by a maximum likelihood method and the estimates are calculated from grouped data by 

maximizing the likelihood function with respect to θ:

 L(θ) = γ Pi
ni (θ)

i=1

k

∏ ,  (2)

where γ is a constant and

 Pi (θ) = f (x, θ)dx
xi−1

xi

∫

is the probability that an observations falls in the ith interval as a function of θ. This is also true for any estimation techniques 

based on grouped data leading to asymptotically effective estimates.

 For tests of goodness-of-fi t to a normal law and for evaluating the parameter vector qT = (m, s) based on a grouped 

sample by minimizing the statistic Xn
2 or maximizing with respect to the likelihood function (2), the probabilities of falling 

into an interval are calculated using

 Pi (θ) =
1

2π
e−t

2 /2 dx
ti−1

ti

∫ ,



583

TA
B

L
E

 1
. O

pt
im

al
 B

ou
nd

ar
y 

Po
in

ts
 o

f 
G

ro
up

 I
nt

er
va

ls
 f

or
 T

es
tin

g 
of

 S
im

pl
e 

an
d 

C
om

po
si

te
 H

yp
ot

he
se

s 
B

as
ed

 o
n 
χ2 -T

yp
e 

Te
st

s 
(f

or
 e

va
lu

at
in

g 
μ

 a
nd

 σ
) 

an
d 

th
e 

C
or

re
sp

on
di

ng
 V

al
ue

s 
of

 th
e 

R
el

at
iv

e 
A

sy
m

pt
ot

ic
 I

nf
or

m
at

io
n 

A

k
t 1

t 2
t 3

t 4
t 5

t 6
t 7

t 8
t 9

t 1
0

t 1
1

t 1
2

t 1
3

t 1
4

A

3
–1

.1
10

6
1.

11
06

–
–

–
–

–
–

–
–

–
–

–
–

0.
40

65

4
–1

.3
83

4
0.

0
1.

38
34

–
–

–
–

–
–

–
–

–
–

–
0.

55
27

5
–1

.6
96

1
–0

.6
89

4
0.

68
94

1.
69

61
–

–
–

–
–

–
–

–
–

–
0.

68
26

6
–1

.8
81

7
–0

.9
97

0
0.

0
0.

99
70

1.
88

17
–

–
–

–
–

–
–

–
–

0.
75

57

7
–2

.0
60

0
–1

.2
64

7
–0

.4
91

8
0.

49
18

1.
26

47
2.

06
00

–
–

–
–

–
–

–
–

0.
81

03

8
–2

.1
95

4
–1

.4
55

2
–0

.7
86

3
0.

0
0.

78
63

1.
45

52
2.

19
54

–
–

–
–

–
–

–
0.

84
74

9
–2

.3
18

8
–1

.6
21

8
–1

.0
22

3
–0

.3
82

8
0.

38
28

1.
02

23
1.

62
18

2.
31

88
–

–
–

–
–

–
0.

87
53

10
–2

.4
22

5
–1

.7
57

8
–1

.2
04

6
–0

.6
49

7
0.

0
0.

64
97

1.
20

46
1.

75
78

2.
42

25
–

–
–

–
–

0.
89

60

11
–2

.5
16

7
–1

.8
78

4
–1

.3
60

2
–0

.8
62

1
–0

.3
14

3
0.

31
43

0.
86

21
1.

36
02

1.
87

84
2.

51
67

–
–

–
–

0.
91

21

12
–2

.5
99

3
–1

.9
02

8
–1

.4
91

4
–1

.0
33

1
–0

.5
33

4
0.

0
0.

53
34

1.
03

31
1.

49
14

1.
90

28
2.

59
93

–
–

–
0.

92
47

13
–2

.6
74

6
–2

.0
76

2
–1

.6
06

8
–1

.1
78

4
–0

.7
46

5
–0

.2
66

9
0.

26
69

0.
74

65
1.

17
84

1.
60

68
2.

07
62

2.
67

46
–

–
0.

93
48

14
–2

.7
43

6
–2

.1
60

9
–1

.7
09

2
–1

.3
04

2
–0

.9
06

5
–0

.4
81

8
0.

0
0.

48
18

0.
90

65
1.

30
42

1.
70

92
2.

16
09

2.
74

36
–

0.
94

30

15
–2

.8
06

9
–2

.2
37

8
–1

.8
01

1
–1

.4
15

0
–1

.0
43

5
–0

.6
59

0
–0

.2
32

5
0.

23
25

0.
65

90
1.

04
35

1.
41

50
1.

80
11

2.
23

78
2.

80
69

0.
94

98

TA
B

L
E

 2
. O

pt
im

al
 P

ro
ba

bi
lit

ie
s 

(f
re

qu
en

ci
es

) f
or

 T
es

tin
g 

of
 S

im
pl

e 
an

d 
C

om
po

si
te

 H
yp

ot
he

se
s 

B
as

ed
 o

n 
χ2 -T

yp
e 

Te
st

s 
(f

or
 e

va
lu

at
in

g 
μ

 a
nd

 σ
) a

nd
 th

e 
C

or
re

sp
on

di
ng

 

V
al

ue
s 

of
 th

e 
R

el
at

iv
e 

A
sy

m
pt

ot
ic

 I
nf

or
m

at
io

n 
A

k
P

1
P

2
P

3
P

4
P

5
P

6
P

7
P

8
P

9
P

10
P

11
P

12
P

13
P

14
P

15
A

3
0.

13
34

0.
73

32
0.

13
34

–
–

–
–

–
–

–
–

–
–

–
–

0.
40

65

4
0.

08
33

0.
41

67
0.

41
67

0.
08

33
–

–
–

–
–

–
–

–
–

–
–

0.
55

27

5
0.

04
49

0.
20

04
0.

50
94

0.
20

04
0.

04
49

–
–

–
–

–
–

–
–

–
–

0.
68

26

6
0.

02
99

0.
12

95
0.

34
06

0.
34

06
0.

12
95

0.
02

99
–

–
–

–
–

–
–

–
–

0.
75

57

7
0.

01
97

0.
08

33
0.

20
84

0.
37

72
0.

20
84

0.
08

33
0.

01
97

–
–

–
–

–
–

–
–

0.
81

03

8
0.

01
41

0.
05

87
0.

14
31

0.
28

41
0.

28
41

0.
14

31
0.

05
87

0.
01

41
–

–
–

–
–

–
–

0.
84

74

9
0.

01
02

0.
04

22
0.

10
09

0.
19

76
0.

29
82

0.
19

76
0.

10
09

0.
04

22
0.

01
02

–
–

–
–

–
–

0.
87

53

10
0.

00
77

0.
03

17
0.

07
48

0.
14

38
0.

24
20

0.
24

20
0.

14
38

0.
07

48
0.

03
17

0.
00

77
–

–
–

–
–

0.
89

60

11
0.

00
59

0.
02

43
0.

05
67

0.
10

74
0.

18
23

0.
24

68
0.

18
23

0.
10

74
0.

05
67

0.
02

43
0.

00
59

–
–

–
–

0.
91

21

12
0.

00
47

0.
01

90
0.

04
42

0.
08

29
0.

13
92

0.
21

00
0.

21
00

0.
13

92
0.

08
29

0.
04

42
0.

01
90

0.
00

47
–

–
–

0.
92

47

13
0.

00
37

0.
01

52
0.

03
52

0.
06

52
0.

10
85

0.
16

70
0.

21
04

0.
16

70
0.

10
85

0.
06

52
0.

03
52

0.
01

52
0.

00
37

–
–

0.
93

48

14
0.

00
30

0.
01

24
0.

02
83

0.
05

24
0.

08
62

0.
13

27
0.

18
50

0.
18

50
0.

13
27

0.
08

62
0.

05
24

0.
02

83
0.

01
24

0.
00

30
–

0.
94

30

15
0.

00
25

0.
01

01
0.

02
32

0.
04

27
0.

06
98

0.
10

66
0.

15
32

0.
18

38
0.

15
32

0.
10

66
0.

06
98

0.
04

27
0.

02
32

0.
01

01
0.

00
25

0.
94

98



584

where ti = (xi – m)/s. The test hypothesis H0 is not rejected if the attained level of signifi cance P{Xn
2 > Xn

2*} calculated ac-

cording to the corresponding χ2
r distribution exceeds a specifi ed level of signifi cance α or if the value of the statistic Xn

2* is 

smaller than a critical value χ2
r,α given by

 
1

2r /2Γ(r / 2)
sr /2−1e−s/2 ds

χr,α
2

∞

∫ = α.

 For maximum likelihood estimates (MLE) based on ungrouped data, this statistic is distributed as the sum of inde-

pendent terms χk−m−1
2 + λ jξ j

2

j=1

m

∑ ,  where ξ1, ..., ξm are standard normal random quantities that are independent of one another 

and of χ2
k–m–1; λ1, ..., λm are numbers between 0 and 1 [15] representing the roots of the equation

 |(1 – λ)J(θ) –Jg(θ)| = 0.

Here J(θ) is the Fisher information matrix with respect to the ungrouped observations with elements

 J(θl , θ j ) =
∂ f (x, θ)
∂θl

∂ f (x, θ)
∂θ j

f (x, θ)dx∫ ;

Jg(θ) is the information matrix with respect to the grouped observations, with

 Jg(θ) = ∇Pi (θ)∇
TPi (θ) / Pi (θ)

i=1

k

∑ .

 In other words, the distribution of the (1) statistic based on MLE with respect to ungrouped data is unknown and 

depends, in particular, on the grouping method [16].

 The asymptotically optimal groupings (AOG) listed in Tables 1 and 2 can be used for testing of normality based on 

MLE estimates of the parameters μ and σ for samples with ungrouped data. Here the losses in the Fisher information on the 

TABLE 3. Percentage Points c2
k,α for the Pearson Test Statistic when Evaluating the Parameters μ and σ

k
p = 1 – α

Limiting distribution model
0.85 0.9 0.95 0.975 0.99

4 2.74 3.37 4.48 5.66 7.26 ВIII (1.2463; 3.8690; 4.6352; 19.20; 0.005)

5 4.18 5.00 6.39 7.77 9.59 ВIII (1.7377; 3.8338; 5.5721; 26.00; 0.005)

6 5.61 6.54 8.09 9.61 11.62 ВIII (2.1007; 4.1518; 4.1369; 26.00; 0.005)

7 6.95 7.98 9.67 11.31 13.43 ВIII (2.5019; 4.6186; 3.4966; 28.00; 0.005)

8 8.28 9.40 11.21 12.95 15.22 ВIII (2.9487; 5.8348; 3.1706; 34.50; 0.005)

9 9.56 10.76 12.69 14.53 16.87 ВIII (3.5145; 6.3582; 3.2450; 39.00; 0.005)

10 10.84 12.11 14.16 16.12 18.58 ВIII (3.9756; 6.7972; 3.0692; 41.50; 0.005)

11 12.08 13.42 15.55 17.59 20.19 ВIII (4.4971; 6.9597; 3.0145; 43.00; 0.005)

12 13.34 14.74 16.98 19.10 21.77 ВIII (5.1055; 7.0049; 3.1130; 45.00; 0.005)

13 14.56 16.01 18.34 20.53 23.30 ВIII (5.7809; 7.0217;  3.2658; 47.00; 0.005)

14 15.78 17.29 19.68 21.96 24.81 ВIII (6.6673; 6.9116; 3.5932; 49.00; 0.005)

15 16.98 18.54 21.04 23.40 26.37 ВIII (7.0919; 7.2961; 3.4314; 51.50; 0.005)
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parameters of the distribution associated with grouping are minimized [3] and the Pearson χ2 test has maximal power relative 

to the very close competing hypotheses [3].

 In Table 1, the boundary points for the interval ti, i = 1, ..., k – 1 are listed in a form that is invariant with respect to 

the parameters μ and σ for a normal distribution. For calculating the statistic (1), the boundaries xi separating the intervals for 

specifi ed k are found using the values of ti taken from the corresponding row of the table: xi = sti + mi, where m and s are the 

MLE of the parameters derived from the given sample. Then the number of observations ni within each interval are used. The 

probabilities of falling into a given interval for evaluating the statistic (1) are taken from the corresponding row of Table 2.

 When AOG is used in the Pearson χ2 test, the resulting percentage points c2
k,α of the distributions of the statistic (1) 

and the models of limiting distributions constructed in this paper are shown in Table 3, where BIII (θ0, θ1, θ2, θ3, θ4) is the 

type III beta distribution with these parameters and the density

 f (x) =
θ2
θ0

θ3B(θ0, θ1)
[(x − θ4 ) /θ3]

θ0−1[1− (x − θ4 ) /θ3]
θ1−1

[1+ (θ2 −1)(x − θ4 ) /θ3]
θ0+θ1

.

 To make a decision regarding testing the hypothesis H0, the value of the statistic Xn
2* is compared with the critical 

value c2
k,α from the corresponding row of Table 3, or the attained level of signifi cance P{Xn

2 > Xn
2*}, determined using the 

limiting distribution model in the same row of the table, is compared with a specifi ed level of signifi cance α.

 The difference between the real distributions G(Xn
2 | H0) of the (1) statistic and the corresponding χ2

k–m–1 distribu-

tions when hypothesis H0 is true is shown in Fig. 1.

 Tables 1 and 2 give Fisher asymptotic information:

 A = detJg/detJ.

 For tests of normality with calculations of an MLE based on the ungrouped sample, only the parameters μ or σ, the 

required AOG tables, percentage points, and the limiting distribution models can be found in [4].

 For AOG relative to the parameter vector and k = 15 intervals in the grouped sample, about 95% of the information 

is preserved. Further increases in the number k of intervals are insignifi cant; it should be chosen based on the following con-

siderations. For an optimal grouping, the probabilities of falling into an interval are not generally equal (usually these proba-

bilities are minimal for the outermost intervals), so that k should be chosen on the basis of the condition nPi(θ) ≥ 5–10 for any 

interval. At least, in choosing k the recommendation

 min
i
{nPi (θ) | i = 1, ..., k} >1

distribution

distribution

distribution

Fig. 1. Distributions of the statistic (1) for maximum likelihood estimates of 

the parameters of a normal distribution based on ungrouped data together with 

the corresponding χ2
k–m–1 distributions.
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should be followed. When this condition holds, in the case where the tested hypothesis H0 is valid, a discrete distribution of 

the statistic in (1) differs insignifi cantly from the corresponding asymptotic limiting distribution. If this condition is violated, 

then the difference between the true distribution of the statistic and the limiting distribution will lead to an increase in the 

probability of a type I error relative to the specifi ed signifi cance level α. It should also be noted that for small sample sizes, 

n = 10–20, discrete distributions of the statistics differ substantially from the asymptotic distributions. This condition on the 

choice of k sets an upper bound estimate on the number of intervals (k ≤ kmax). The number of grouping intervals affects 

the power of the Pearson χ2 test [17]. It is absolutely unnecessary that its power against a competing distribution (hypothesis) 

should be maximal for k = kmax.

 In order to compare the power of the Pearson χ2 test for verifi cation of normality with the power of special and non-

parametric goodness-of-fi t tests, the power has been estimated relative to the same competing distributions (hypotheses) as in [4].

 The test hypothesis H0 is taken to be that the observed sample obeys the normal distribution:

 f (x) = 1

σ 2π
exp − (x −μ)2

2σ2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.

 As competing hypotheses for studying the power of the χ2 distribution, we have considered adherence of the ana-

lyzed sample to the following distributions: competing hypothesis H1 corresponds to a generalized normal distribution (family 

of distributions) with the density

 f (x) =
θ2

2θ1Γ(1 /θ2 )
exp −

|x − θ0|
θ1

⎛
⎝⎜

⎞
⎠⎟

θ2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

and a shape parameter θ2 = 4; hypothesis H2 is the Laplace distribution with the density

 f (x) = 1

2θ1
exp −

|x − θ0 |
θ1

⎧
⎨
⎩

⎫
⎬
⎭
;

and hypothesis H3 is the logistic distribution with the density

 f (x) = π
θ1 3

exp −
π(x − θ0 )
θ1 3

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
1+ exp −

π(x − θ0 )
θ1 3

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

,

which is very close to a normal distribution. Figure 2 shows the densities of the distributions corresponding to hypotheses H1, 

H2, and H3 with scale parameters such that they are closest to a standard normal law. This choice of hypotheses has a certain 

justifi cation. Hypothesis H2, corresponding to a Laplace distribution, is the most distant from H0. Distinguishing them usually 

ƒ

x

Laplace

Logistic Normal

Generalized
normal

Fig. 2. Probability densities corresponding to the hypotheses Hi 

examined here.
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presents no problem. The logistic distribution (hypothesis H3) is very close to normal and it is generally diffi cult to distinguish 

them by goodness-of-fi t tests.

 The competing hypothesis H1, which corresponds to a generalized normal distribution with a shape factor θ2 = 4, is 

a “litmus test” for detection of hidden defi ciencies in some tests [1, 2, 4]. It turned out that for small sample sizes n and small 

TABLE 4. Power of the Pearson χ2 Test with Respect to Hypotheses H1, H2, and H3

n kmax kopt

α

0.15 0.1 0.05 0.025 0.01

H1

10 4 4 0.235 0.146 0.043 0.032 0.002

20 4 5 0.262 0.177 0.100 0.058 0.021

30 5 5 0.312 0.216 0.136 0.079 0.043

40 6 5 0.336 0.267 0.168 0.111 0.061

50 6 5 0.401 0.311 0.204 0.129 0.068

100 9 5 0.558 0.479 0.352 0.254 0.158

150 10 7 0.722 0.634 0.486 0.353 0.217

200 11 9 0.783 0.695 0.548 0.417 0.279

300 13 11 0.907 0.858 0.756 0.646 0.492

Н2

10 4 4 0.267 0.206 0.074 0.058 0.01

20 4
4 0.264 0.177 0.104 0.067 0.037

5 0.247 0.189 0.116 0.061 0.024

30 5 5 0.312 0.261 0.153 0.103 0.044

40 6 7 0.443 0.358 0.250 0.167 0.101

50 6 7 0.500 0.423 0.312 0.225 0.138

100 9 9 0.770 0.708 0.596 0.494 0.379

150 10 9 0.899 0.860 0.785 0.705 0.596

200 11 11 0.964 0.946 0.908 0.880 0.786

300 13 13 0.996 0.993 0.985 0.974 0.950

Н3

10 4 4 0.221 0.150 0.046 0.034 0.003

20 4 4 0.194 0.125 0.059 0.038 0.016

30 5 5 0.169 0.125 0.062 0.034 0.012

40 6 7 0.204 0.143 0.082 0.045 0.020

50 6 7 0.214 0.155 0.088 0.050 0.023

100 9 10 0.303 0.231 0.146 0.090 0.047

150 10 10 0.359 0.284 0.191 0.124 0.072

200 11 11 0.432 0.355 0.250 0.175 0.105

300 13 13 0.566 0.486 0.373 0.280 0.190
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specifi ed probabilities α of type I error, a number of tests employed for testing goodness-of-fi t to normal are not able to dis-

tinguish close distributions from normal. In these cases, the power 1 – β with respect to hypothesis H1, where β is the proba-

bility of a type II error, is smaller than α. This means that the distribution corresponding to H1 is “more normal than normal” 

and indicates that the tests are biased.

 The power of the Pearson χ2 test was studied with different number of intervals k ≤ kmax for specifi ed sample sizes n. 

Table 4 lists the maximum powers of the χ2 test relative to the competing hypotheses H1, H2, and H3, and corresponding to 

the optimal number kopt of grouping intervals. To a certain extent, it is possible to orient oneself in choosing k on the basis of 

the values of kopt as a function of n listed in Table 4.

 The Nikulin–Rao–Robson Goodness-of-Fit Test. A variant of the standard statistic Xn
2 was proposed [12–14] in 

which the limiting distribution of the modifi ed statistic is a X2
k–1 distribution (the number of degrees of freedom is independent 

of the number of parameters to be estimated). The unknown parameters of the distribution F(x, θ) have, in this case, to be esti-

mated on the basis of the ungrouped data by a maximum likelihood method. Here the vector P = (P1, ..., Pk)
T is assumed to be 

specifi ed, while the boundary points of the intervals are defi ned using the relations xi(θ) = F–1(P1 + ... + Pi), i = 1, ..., k – 1. The 

proposed statistic has the form [13]:

 Yn
2(θ) = Xn

2 + n−1aT(θ)Λ(θ)a(θ),  (3)

where Xn
2 is calculated using Eq. (1). For distribution laws that are determined only by shift and scale parameters,

 Λ(θ) = [J(θ) – Jg(θ)]–1;

in the case of a normal distribution with a parameter vector θT = (μ, σ), the Fisher information matrix has the form:

 J(θ) = 1/σ2 0

0 2 /σ2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,

with the elements of the information matrix based on grouped data Jg(θ) given by

 Jg(μ, μ) =
1

σ2Pi (θ)
( f (ti−1)− f (ti ))

2

i=1

k

∑ ;

 Jg(σ, σ) =
1

σ2Pi (θ)
(ti−1 f (ti−1)− ti f (ti ))

2

i=1

k

∑ ;

 Jg(μ, σ) = Jg(σ, μ) =
1

σ2Pi (θ)
( f (ti−1)− f (ti ))(ti−1 f (ti−1)− ti f (ti ))

i=1

k

∑ ;

where

 ti = (xi −μ) /σ; t0 = −∞; tk = ∞; f (t) = 2πet
2 /2⎡

⎣⎢
⎤
⎦⎥
−1

is the standard normal distribution. The elements of the vector aT(θ) = [a(μ), a(σ)] are given by

 a(μ) =
ni ( f (ti−1)− f (ti ))

σPi (θ)i=1

k

∑ ,

 a(σ) =
ni

σPi (θ)
(ti−1 f (ti−1)− ti f (ti ))

i=1

k

∑ .

 As in the case of the Pearson test, when testing for normality with MLE estimation of the parameters μ and σ based 

on the ungrouped data, Tables 1 and 2 can be used.
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 For calculating the (3) statistic, the boundaries xi separating the intervals for given k are found from the values of ti 

in the corresponding row of Table 1 using the formula xi = sti + m, where m and s are the MLE parameters found from the 

sample data. Then the number of observations ni in each interval is counted. The probabilities Pi(θ) of falling into an interval 

TABLE 5. Power of the Nikulin–Rao–Robson Set with Respect to Hypotheses H1, H2, and H3

n kmax kopt

α

0.15 0.1 0.05 0.025 0.01

Н1

10 4 4 0.348 0.1 0.029 0.009 0.006

20 4 5 0.234 0.143 0.074 0.041 0.016

30 5 5 0.256 0.197 0.102 0.053 0.023

40 6 5 0.293 0.221 0.123 0.079 0.035

50 6 5 0.326 0.240 0.148 0.083 0.040

100 9 5 0.485 0.395 0.271 0.179 0.102

150 10
6 0.619 0.530 0.397 0.284 0.179

7 0.641 0.539 0.383 0.261 0.148

200 11 9 0.713 0.616 0.464 0.339 0.214

300 13 11 0.872 0.810 0.695 0.573 0.420

Н2

10 4 4 0.368 0.103 0.055 0.031 0.007

20 4 5 0.250 0.210 0.126 0.065 0.039

30 5 6 0.349 0.265 0.185 0.127 0.078

40 6 7 0.474 0.403 0.297 0.218 0.149

50 6 7 0.548 0.473 0.365 0.281 0.190

100 9 9 0.807 0.755 0.667 0.583 0.482

150 10 9 0.919 0.889 0.834 0.774 0.691

200 11 11 0.973 0.961 0.933 0.900 0.849

300 13
11 0.997 0.995 0.990 0.983 0.968

13 0.997 0.995 0.990 0.983 0.968

Н3

10 4 4 0.321 0.083 0.034 0.014 0.005

20 4 5 0.166 0.120 0.065 0.030 0.014

30 5 6 0.198 0.138 0.080 0.047 0.024

40 6 7 0.232 0.173 0.104 0.063 0.034

50 6 7 0.251 0.188 0.117 0.074 0.040

100 9 10 0.360 0.290 0.202 0.141 0.091

150 10 10 0.432 0.358 0.263 0.195 0.131

200 11 11 0.509 0.436 0.337 0.259 0.183

300 13 13 0.641 0.572 0.469 0.381 0.288



590

when calculating statistic (3) are taken from the corresponding line of Table 2. The elements of the vector a(θ) and matrix 

Λ(θ) are calculated using the tabulated data for ti, Pi and the resulting estimates of s. To decide on the test results for hypoth-

esis H0, the value of the statistic Yn
2* is compared with the corresponding critical χ2

k–1,α or the attained level of signifi cance 

P{Yn
2 > Yn

2*} is found from the corresponding χ2
k–1 distribution. To test for normality with MLE calculation of the parameters 

μ or σ separately on the basis of ungrouped samples, the required tables of AOG can be found in [4].

 Estimates of the power of the Nikulin–Rao–Robson test compared to the competing hypotheses H1, H2, and H3 for 

kopt are given in Table 5. This test is generally more powerful than the Pearson test (for example, see its powers relative to the 

competing hypotheses H2 and H3). Here we often have kopt = kmax for

 min
i
{nPi (θ)} >1.

However, this is not always so. In terms of its power relative to the “tricky” hypothesis H1, it is inferior to the Pearson test, 

and kopt in this case is considerably smaller than kmax with AOG.

 If we combine the results of studies of the powers of the tests discussed in this paper with the results of [1, 2, 4], then 

the entire set of tests used to test for normality can be ordered in terms of their power relative to the competing hypotheses 

H1, H2, and H3 in the following way:

 • relative to competing hypothesis H1:

D’Agostino z2 ≻ David–Hartley–Pearson ≻ Geary ≻ Shapiro–Wilk* ≻ Pearson χ2 ≻ Zhang ZC
* ≻ Watson ≻ Anderson–Darling ≻ 

≻ Frosini ≻ Royston ≻ Kuiper ≻ Epps–Pulley* ≻ Cramer–Mises–Smirnov ≻ Nikulin–Rao–Robson ≻ Zhang ZA
* ≻ Spiegelhalter* ≻ 

≻ Kolmogorov ≻ Zhang ZK ≻ D’Agostino z1
2 + z2

2 ≻ Hegazi–Green T1
* ≻ Hegazi–Green T2

*;

 • relative to competing hypothesis H2:

Spiegelhalter ≻ Hegazi–Green T2 ≻ Geary ≻ Hegazi–Green T1 ≻ D’Agostino z1
2 + z2

2 ≻ Anderson–Darling ≻ Watson ≻ 

≻ Epps–Pulley ~ Frosini ≻ Cramer–Mises–Smirnov ≻ Royston ≻ Kuiper ≻ Zhang ZA ≻ Zhang ZK ≻ Zhang ZC ≻ Kolmogo-

rov ≻Shapiro–Wilk ≻ David–Hartley–Pearson ≻ D’Agostino z2 ≻ Nikulin–Rao–Robson ≻ Pearson χ2;

 • relative to competing hypothesis H3:

Hegazi–Green T2 ≻ D’Agostino z1
2 + z2

2 ≻ Spiegelhalter ≻ Royston ≻ Geary ≻ Zhang ZA ≻ Zhang ZC ≻ Hegazi–Green T1 ≻David–

Hartley–Pearson ≻ Epps–Pulley ~ Zhang ZK ≻ D’Agostino z2 ≻ Anderson–Darling ≻ Frosini ≻ Cramer–Mises–Smirnov ≻ 

≻ Watson ≻ Shapiro–Wilk ≻ Kuiper ≻ Kolmogorov ≻ Nikulin–Rao–Robson ≻ Pearson χ2.

 Here it should be noted that for small n, the series of tests indicated above by an asterisk cannot differ from the normal 

distribution corresponding to hypothesis H1 owing to the bias of the distribution of the statistics for these tests [1–4].

 This work was supported by the Ministry of Education and Science of the Russian Federation as part of government 

assignment No. 2.541.2014/K.
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