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Optimal Grouping in Estimation and
Tests of Goodness-of-fit Hypotheses

by

V.I.Denisov, B,Yu.Lemeshko *)

Summa r y. A problem of asymptotically optimal grouping in
estimation of distribution parameters by maximum-likelihood me-
thod with grouped data is considered. Involvement of goodness-
of-fit tests with Fisher's information matrix from grouped data
is discussed, It is shown that solution of the problem of asym-
ptotically optimal grouping makes available maximum efficiency
of tests with close competing hypotheses, Exmmples of the use of
tables of optimal grouping in estimation and tests of hypothe-
ses are considered.

1.Introduction :
Asymptotic variance matrix of maximum likelihood estimate (MLE)
with grouped data is defined by the relation, KULLDORF[11 BODIN

(2] 2(9)=[n I5@)]""

where

: & D5 el é
1660)= 3 2P M) | 3tn REK) 3t RE(K) 2%
S pa (k) k=1 39(; 89/

is Fisher's information ma%;ix from grouped data,

Xg
PYk) = [ f (x) dx
XG

is observation occurence‘;;obability in an interval. Elements of
this matrix depend on boundary points of intervals. In case, when
distribution function is determined by one parameter or estima-
tion of omly one distribution parameter of probabilities is car-
ried out, with other parameters known, the aim of the problem of
N

*) Novosibirsky Flektrotechnichesky Institut,

Novosibirsk,92, prospekt Karla Marxsa, 20

&3



asymptotically optimal grouping is maximization of MLE asymptotic
variance from grouped data. And this problem reduces to maximi-
zation of Fisher's amoun} of information about parameter with
grouped sample, i.e., to solution of a problem

mox ]FG(H) =max - f ((%’n @G(k))i)‘*(k) (1)
XE,<XE, k=t,m  XE,<XE k=1m =\ - 00 e

Construction of optimal partition is a problem of design of expe-
riments, and its solution is not a simple one because the amount
of lost information for a given partition is a function of un-~
known parameter & . Problem (1) for mathematical expectation of
normal distribution was solved in the paper of COX [3], for pa-
rameters of normal and exponential distribution in the paper of
KULLDORF [1]. In estimation of vector of parameters we deal with
information matrix. Under such conditions the problem of asymp-
totically optimal grouping was not considered before. In this
case various functionals in asymptotical variance matrix, e.g.,
the same as applied in theory of optimal design of regression
experiments, DENISOV [4], may be chosen as tests of optimality,
In this paper optimization is carried out resulting from mini-
mum of generalized asymptotic estimate variance, i.e., determi-
nant of asymptotic variance matrix is minimized or,which is the
same, determinant of information matrix in terms of boundary po -
ints is maximized

& &
max det [f6) = mox det |55 2R (K VTR

= (2
== (3 .
XI(:—1<X51 k=1,m X‘(G_1<Xf, k:f,m K=t pe (k)

Other tests can be used as well. In all cases losses of infor-
mation from grouped data will be minimized in various ways,

2.Connection of tests of goodness-of-fit hypotheses with
information matiix

Figher's information serves as ameasure of interior proximity of

random variable distributions, and this interior nature is con-

nected with power of differences between close values of parame-

ter. Statistic reduces sampling data, and therefore power of dif-
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ferences with the help of statistic is no more than with the

help of the whole sample. It means that, if it is necessary to
chose among some statistics, it should be preferable to chose
that one, for which losses of Fizher's information are minimal,
Thus, with growth of information losses because of grouping po-
wer of tests connected with grouping of initial data reduces as
well, . :

Let us consider how Fisher's information matrix is connected with
Pearson chi-square test, Statistic

Xt =nZ(r/n -RUNY/RW,

where P:(k) is hypothetic probability of observation occurence
in the k -th interval, within the limit, is subject to chi-squ-
are distribution with /-7 degree of freedom, if the null hypo-
thesis is right, and it is subject to noncentral chi-square dis-
tribution with the same number of degrees of freedom and parame-
ter of non-centrality

e kf (AL - 7)) /).
=1

if the competing hypothesis is right and the sample agrees with
distribution of the same type but with parameter 19, (in general
case vectorial), Let &, 6 +af , Expanding P;(k) into Taylor's
series and ignoring the terms of the higher order we derive

3 G 2 G 6,
[B (K -TTRWa0-RTW]* 7 40770 v RO

R
: RE(k) : kZ;1 %@( k)

7 o Rk) vTA K

= Bt ))9: IQTIG(Q)AQ.
na <:£1 P 40 = nab I (4)

The power of Pearson chi-square test is the non-decreasing func-
tion in A » Matrix of information losses caused by grouping
sl =1.(6) —IFG(G) » where I.(6) is Fisher's information matrix

for ungrouped observations, is a non-negatively definite one and
hence 467414620, Ang as A0TIf(6)26=26"1.(0)00 - 46Tal 0 6

it is.clear that with the growth of information losses the power

m
A=nY
k=1
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of test under close alternative hypotheses decreases as well.
These losses may be reduced by fitting the boundery points so
that l:ﬁb) would tend to [-(9). Thus, in the given case we came
to the same problem of asymptotically optimal grouping as in the
estimation of parameter. Partition of the range, in which samp-
ling values of random variables occured in intervals of equal spa-
ce with the following combination of adjacent intervals, if a
small number of observations occured in them, or partition of
the range of definition of random variable in intervals of equal,
probability, and these procedures are basically applied in prac-
tice, in general case are far from optimal ones.

Not only for Pearson chi-square test, but also for a number of
other statistics used in tests of hypotheses, suitable measures
of proximity of distributions are directly defined by Fisher's
Information matrix withgrouped data and grow with decreasing of in-
formation losses from grouping, and hence, powers of suitable
tests increase. Statistic of likelihood relation for goodness-
of-fit tests with certain distribution takes a form of

L4 m , p€
£ =nt[1(80/n )™ = T (atel %

k=1 Vnk/n' Y

Where f%g?k) are hypothetic probabilites of observation occuren-
ce in the K —th interval. Goodness-of-fit hypothesmis is rejected,
ir Z is sufficiently small. Exact distribution of this statis-
tic is unknown. However, if the null hypothesis is right, then
with n—>co the variable -2¢2f is distributed esymptotically as chi-
square with m-1 degrees of freedom. Moreover, in this case sta-
tistic -20n ¢ 1is asymptotically equivalent to chi-square statistic
If the competing hypothesis is right and the sample belongs to
the analogous distribution but with parameter 6, , then sta-
tistie

2 e
“0tat = 2n %G(k) Z/z.(%’(k))
: k=1

¢
RE(K)
is the measure of proximity of distributions considered. With ,}
its growth the power of the test increases. Having denoted &=

- @+ a6, expand Pef(k) into Taylor's series, ignaring the terms
of the higher order; we have

-1-}



G
mn T
G, & w7 (k)ag
~28 8= 2n 3 (P50 +7B (at) bn (1 + TR IKIG)

k=1 pg{k)
Further, expanding Zﬂ(7+x)by Teylor's formula and ignoring the
terms which are higher than the second order, we obtain

vR1Ka0 _ a0 RW A Wi

-20nl = 2/15? (E;?k) + VT]%GYk)AEv[
2 k=1

PE(K) 2 (PF)? |
&z - To (k) v TR (k)a 6
D T 0%k) . 48T e R (K) vy }:
né[a@vg(h- 2 2%
(TR Tn&s:
= na@”[kgj %M)JAQ: nAQT]f(B)AQ. (5)
=4 6

Thus, we obtained an expresaion analogous with (4),.Statistic of
modified chi-square test in defined by the expression

mod X2 = /:’Li(/zk -n %g(k))z//zk :

where /1, is replaced with [ if 7=0. Let us consider how the
given measure depends on Fisher's information matrix. Applying,
as before, expansion into Taylor's series and ignoring the terms
with A higher than the second order, we obtain :

i o f (Pag(ke) '+ 2467y PGG(:)-,OGG(/())Z:
k<1 Ry (k) +2670 Bk)

2 4070 RULK) 7P (K) 2 B .
k=t BSUK)[1 + 2677 BEK)/ 5K ]
Puther, using the expansion into (/+X)™’ series we have

G &
m g R k) vTE (k) é
mod ¥* ~ /’lA@T(Z' —9% 46=rnab"I7(6)ab,(6)
k=1 /Dg (k)
\
expression analogous with(4) and (5), i.e., this measure also in-
creases with decreasing of information .losses from grouping,

Statistic of Hellinger's distance takes a from of

=N

m
H.D. = arccos J_ [k pSy)
kagd =0
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Operating analogous with the above and expanding F;?(k) into
Taylor's series by ignoring the terms of the higher,order we have

H.D. = arccos 3 Ve PEtk) + 8w RE) PECK) =
k=1 :
arccos f ,%Q(k)\// + 407 B (k) / B(K)
k=1

124
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Futher, using expansion in series for \/717?-, we obtain
m € ¢
H.D. ~arccos )~ ,ge(k)[f + ﬁaé’rv%(k)//)e (k) -
k=1

= 4977’%6{“)‘7%@(")“9}: arccos[ 1- £ a07I00n0] . (7
2 (k) 4

From (7) it is obvious that with the decrease of information los-

ses in grouping Hellinger's distance increases.

Kulback-Leibler divergence statistic is defined by the expression

kLo REK) En (BS(K)/(nesn)).
k:
In the similar way we ;;rive

m G ¢
K.L.S. = ¥ BlK) zn[ B0 L S &1@ _vn;,(k)aa}_
k=1 BE(k) +vRE(k) 26 , BE(k)

k=1

Futher, using expansion for ln(1+Xx) we obtain

& RK)AO 1 A0TvRS(K) vTRK) A O
K.L.S. >3 Ak |2t s ) =
kZ=1 2 [ - Rf) &= AP

= 1 467I;(6)a6. (8)

Hence, it obvious that by minimizing the information losses in
grouping we increase this measure as well.

Relations (4-8) show that the problems of asymptotically optimal
grouping (1-2) increase the quality of statistic inferences in
2ll cases considered. Solution of the problem of asymptotically
optimal grouping is obtained for a series of continuous distri-
butions most often used in practice: exponential, normal, Wei-
bull's, Raley's, Maxwell's, Gauchy's, logistic, extreme values,
double exponental, Laplace's distributions, modulus of multidi-
mentional normal distribution, gamma-distribution,

&8



The practical value of the tables obtained consistas in the fact
that in moat cases it has become possible to derive the solution
in an invariant form about parameters of distributions.

Example 1. Density function of exponential distribution
is described by an expression J,(x)= 6 exp(-Ox), where x>0, 6> 0 .
Fisher's information amount about parsmeter & with grouped da-

ta is m (¢ etk =7 e‘fk—1)2
G { =
IF(9)=g—sz = =
=1

o th1_ ot ?

where % =0 XS, and with ungrouped ones I.(0)=E, (32!27[9()()/39) =.
=1/6% In table 1 optimal boundary points, maximizing optimal
asymptotic information, being equal to A= If(e)/IF(G), are pre-
sented. Table 2 presents suitable values of optimal probabiliti-
es.

Let us note that value A allows to make inferences on the quali-
ty of the grouping carried out, Computations of values of rela-
tive asymptotic information A with partition in intervals of equ-
al probability have been carried out for comparison. It turned
out that with m =10 A=0,8928, and with M =20 A=0,9462, as value
A=0,9798 agrees with optimal grouping with m =10.

Exampile 2. Density function of normal distribution is
described by an expression

.}e(x): _Mi},

{ p {
SVorx 252
where X¢ (—oo,oo),U>0. Asymptotically optimal boundary points of
grouping intervals, maximizing the determinant of Fisher's mst-
rix with grouped data

&

IS 18(,Q)
FIEuE) IE @) |°

where

» m 2
IG( ):_L (] P(tk-1)) -
where - "g’ Dlte) - P4,
L2 (XE-p) /T, P)= e TRIVIT, O(7) :_L Yu)du,

&9
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I 6 ()= f (tr Plti) - ti-1 lfﬂ(fk—y))z,

TS B - P,
!5 (Sit) - W e Vi) - b St
2
(l_ k=1 ¢(tk) _®(f/(—-l)
in the form of “f:k=()(k -j“)/(T are presented in table 3. In the same
table suitable values of relative asymptotic information A equal
to A ‘\'IG\/ |1;| , where 1. is Fisher's information matrix of

parameters of normal distribution with ungrouped sample and II \-
= 2/04, are presented.

I (/u,

Example 3. Weibull's distribution density function takes

£
the form o }e(x):g(g,)e_1@"ﬁ’{‘(é)9}’ X>0, 6,6,>0.

By maximizing the determinant of Ficher's information matrix with'
grouped data

1) I6(6,6.)
I =|1566,6) 1 (01)

where

b
i °(0)= Z (%€ kg, b=t € 'ln i'k-t)z

atei ot :
; 2
76 7 (b "%ty o)
Lal=2) et =
z -4 S -
[5(9,9')_ Z(tk fe k ’—fke k)(fke k@n i'k “'tk_,e k ’enfk_')

Or =1 e ~Th-t_ ot

we derive optimal boundary points of grouping intervals in the
form of ¢, = (XG/B,) , which are presented in table 4. Table 5
presents suitable optimal probabilities of observation occurence
in an interval. The tables present values of optimal asymptotic
information A=[IS|/|1¢|, where |1.|=1.64493467 Pigure 1 il-
lustrates the gain of the chi-square test power with optimal .
grouping in comparison with partition in intervals of equal pro-
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Table 3
Optimal boundary points of intervals of grouping in the
form of #=(X{-M)/C tor simultaneous estimation of two
parameters of normal distribution and tests of goodness
of fit with Pearson chi-square test, and auitable value
L of relative usymptotic information A.
k t, t, t, t, ts tg t7
3|-1.1106| 1.1106
4|-1.3834| 0.0 1.3834
5| =1.6961(-0.6894| 0.6894| 1.6961
6| -1.8817|-0.9970| 0.0 0.9970| 1.8817
7 | ~2.0600|-1.2647|-0.4918| 0.4918| 1.2647| 2.0600
8 -2.1954|-2,4552|-0.7863| 0.0 0.7863| 1.4552| 2,1954
9| -2.3188|-1.6218|~1,0223|-0.3828| 0.3828 .1.0223 | 1.6218
10. | =2,4225|-1,7578|-1.2046|-0.6497| 0.0 0.6497| 1.2046
11 | -2,5167 |~1.8784 |-1.3602|-0.8621 -0.3143| 0.3143| 0.8621
12 | -2.5993 |-1.9828|-1.4914(-1.0331 -0.5334| 0.0 - 0.5534
13 | =2,6746 |-2,.0762|-1.6068|~1,1784 -0.7465|-0.2669 | 0.2669
14 | =2.7436 |-2.1609 |-1.7092 |-1. 3042 |-0. 9065 -0.4818| 0.0
N5 | -2.8069 |~-2.2378(|=1,8011|=1.4150 [-1.0435 -0.6590 [-0.2325
k td tg t10 ti 1 t1 2 t13 t14 A
3 0.4065
4 0.5527
5 0.6826
6 0.7557
1 0.8103
8 0.8474
9 (2.3188 0.8753
10 | 1.7578 [2.4225 0.8960
11 [ 1.3602 [1.8784 [2.5167 0.9121
12 | 1.0331(1.4914 [1.9828(2.5993 0.9247
13 | 0.7465(1.1784 [1.6068(2.0762 2.6746 0.9348
14 | 0.4818|0.9065 {1.3042(1.7092(2.1609 2.7436  0.9430
15 | 0.2325]0.6590 {1.0435(1.4150(1.8011 2,2378 |2.8069| 0.9498
73
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Table 4

Optimal boundary points of 1ntervals of grouping in the form
of T, .= (XG/B,) ¢ for simultaneous estimation of two parame-
ters of Wribull's distribution and suitable values of rela-

tive asymptotic information A,

kl ot ht t, 5, 5 % £ %,
3(0.2731|2.6067

40.2109(1.3979(3.4137

5|0.1044 [0.5123(1.9590| 3. 8606

6|0.0772|0.3649 1.2269|2.5726 | 4. 4096
7/0.0501|0.2318(0.6758|1.7192 |2.9922 |4. 7949
8(0.03770.1740 [0.4837[1.1904|2.2041 |3.4285|5. 2049
910.0275|0.1269 |0.34310.7829 [1.6027 [2.5713|3.7667 |5.5273
10(0.0213(0.0988 [0.2638|0.5770 (1. 1805 |1,9932 2. 9269 |4. 1024
1110.0165]0.0771|0.2046 [0.4359 |0.8560 |1.5344 [2.3192 [3.2319
1210.0123|0,06180.06380.3434 |0.6517 |1.1789 [1.8570 [2.6163
130.0106 [0.0500 |0. 1326 |0.2754 |0. 5106 |0.9030 |1. 4807 |2. 1401
14 /0.0087 |0.0412 |0.1094 [0.2261 |0.4126 |0.7116 |1.1798 [1.7608
15(0.0072 |0.0344 |0.0913 [0.1881 |0. 3394 [0.5734 |0.9387 |1. 4426
k ty tfo tu tIZ tfa tM A

3 0.4079

4 0.5572

5 0.6836

6 0.7571

% 0.8109

8 0.8480

9 0.8756

10 |5.8478 0.8963
114.3930(6.1270 0.9123
123.5103 [4.6589 |6.3853 0.9248

13 |2.8810 [3.7623 [4.9016 [6.6208 0.9349

14 |2.40193.1286 (3.9997 [5.1314 [6.8444 0.9431
15 [2.0116 |2.6381 |3.3538 |4.2169 [5.3425 [7.0506 | 0.9498
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Table 5
Optimal frequeneies with simultaneous estimation of two
parameters of Weibull's distribution or tests of good-
ness of fit with Pearson chi-square test and suitable
values of relgtive asymptotic information A.

== =
N -

k P, P, P, P, P P, P, R
3/0.2390 {0.6872|0.0738 !
410.1901 [0.5628|0.2142|0.0329

5]0.0991 {0.3017|0.4581{0.1199|0.0211

6|0.0743 |0.23140.4011 0.2769 0.0641/0.0122

710.0489 |0.1581|0.2843|0.3295|0.1290|0.0419|0.0083
8(0.0370|0.1227|0.2238/0.3124|0.1938/|0.0779|0.0269| 0.0055
9(0.0271 |0.0921|0.1712|0.2525|0.2557 |0.1250(0.0533| 0.0191
10]0.0211 |0.0729 (0. 1379 |0.2065|0.2545|0.1708|0.0827|0.0371

0.0164 |10.0578|0.1108|0,1683|0.2218|0.2101|0.1164|0.0589
0.0131)0.0468|0.0912(0.1395|0.1882 |0.2136|0.1515|0.0830

13(0.0105|0.0383|0.0754(0.1165[0.1592|0.1947|0.1779|0.1099 -
14 |0.0087 |0.0317|0.0632|0.0988|0.1357|0.1710|0.1836|0.1354
15|0.0072 |0.0266 |0.0635 |0.0842|0. 1166 |0.1486|0.1725|0.1548
k P? Pia Pu sz z Plj Pﬂ/ P 5 A

3 0.4079
4 0.5572
5 0.6836
6 0.7571
7 0.8109
8 0.8480
9 [0.0040 0.8756
10 |0.0136 |0.0029 0.8963
11 |0.0271 [0.0102 |0,0022 0.9123
12 (0.0432 |0.0204 |0.0078 [0.0017 0.9248
13 0.0615 |0.0329 |0.0158 |0.0061 [0.0013 , [0.9349
14 |0.0814 |0.0467 |0.0255 |0.0124 |0.0048 |0.0011 0.9431
15 |0. 1025 |0.0623 [0.0365 [0.0203 |0.0099 |0.0039 |0.0009 |0.9498
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bability at test of hypotheses about the main parameter & for
m-=3;

J.Recommendations on the use of tables of asymptotically optimal
grouping

In the matching of distiributions of a class limited by preli}ni-
nary reasonings it is customary to follow the next sequence: pa-
rameters are defined for each distribution with empirical data;
goodness of fit of the derived theoretical curve with empirical
data with one of the goodness-of-fit test in verified; distribu-
tion function yielding the best goodness of fit is chosen.

The most acceptable goodness of fit test with g large number of
observations is Pearson chi-square test.

The test of goodness of fit with chi-square test is carried out
according to the following scheme. The range of change of random
variables which is defined by empirieal data is partitioned in
M intervals by boundery points. Futher frequencies of 1, ob-
servation occurences in each interval are computed. For hypo-
thetic distribution defined according to theoretic considerati-
ons, probabilities .%G(k) of observation occurences in Kk -th
interval are computed, and after that the value of chi-square
statistic is computed (3). This statistic has distribution ofxz
with S=m-1 degrees of freedom, if estimation of parameters in
terms of the given sample has not been carried out, and it has

a distribution of 3[ with m-r-{ degrees of freedom, if from
grouped data I” parameters of distribution were estimated, and
it has a distribution intermediate between chi-square distribu-
tion with the numbers of M -1 and Mm-r-1 degrees of freedom, if
the estimation was carried out with ungrouped data.

Depending on the fact, whether the distribution parameters were
estimated in terms of the given sample and according to what ty-
pe of data, grouped or ungrouped ones, the estimates were defi-
ned, by the given significance level X from the tables of chi-

square distribution with the suitable number of degrees of free-
dom the critical value ofysu is defined, If the value of chi-scuare
statistic is less than Jﬁe ) then the goodness-of-fit hypothe-
sis is not rejected. In the estimation of distribution parameters
with ungrouped data one hes to be convinced that the value of .%2
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ar2 2
does not exceed the values of X, 1,00 and J[m-,«_, , e
In case of the use of tables of asymptotically optimal grouping
in the verification of hypotheses in terms of chi-square test
the maximum power of the test with close alternative hypotheses
is guaranteed.
In this case it is necessary to follow the sequence of operati-
ons: depending on the form of distribution boundery points of
grouping intervals (number of intervals is defined in such a
way that the product of the sample size by the probability of
observation occurence in each interval would be more than one,
and if possible > 10) are chosen; the number of values of ran-
dom variables A, occurred in the interval is computed; the value of
probabilities corresponding to the theoretical distribution are
taken from the tables of optimal frequences; chi-square statis-
tic is computed and compared with critlcal values of xs o
Example 4. It is necessary to test the goodness of fit
of empirical data with exponential distribution with parameter
6 =1. Ordered by inereasing the mample from 50 random numbers
is equel to 0.01, 0.01, 0.01, 0.04, 0.17, 0.18, 0.22, 0.22,
0.25, 0.25, 0.29, 0.42, 0.46, 0.47, 0.56, 0.59, 0.67, 0.68,
0.70, 0.72, 0.76, 0.78, 0.83, 0.85, 0.87, 0.93, 1.00, 1.01,
1.01, 1.02, 1.03, 1.05, 1.33; 1.34, 1.37, 1.47, 1.50,- 1.52,
1.54, 1.59, 1.71, 1.90, 2.10, 2.35, 2,38, 2.46, 2.50, 3.73,
4,07, 6.03.
From the table 2 we find that we have to choose 4 g‘ouping
intervals as £n- A “(4) =50 + 0.0345'> 1. From table 1 define the
boundary points a.t m=4, t,=0.7541, ¢, =1.7716, 1, =3.3652, Xk =
f /6 and compute the number of observation occurences in each
interval- ‘n,=20, N,=21, N3 =6, 1, -3. Theoretical probabiliti-
8BS frois BRMT 7 anle R “(1)=0. 5296, B7(2)=0.3004, LF(3)=0.1355,
R €(4) =0. 0345. Compute statlstic ‘%2 =4.566. The number of de-
grees of freedom S=M-17=3, At the significance level oK =0.1
find the critical value of Jlﬁ,a =6.251 and, consequently, the
sampling data agree with exponential distribution.
In the estimation of parameters of distribution with the appli-
cation of maximum likelihood method or chi-square minimum the
use of optimal grouping allows to reduce asymptotic estimate
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variance,

As it is seen from the tables of asymptotically optimal grouping
the optimal boundary points depend on the true value of parame-
ter which as a matter of fact is unknown. Thisa difficulty is
overcome by carrying out grouping with predicted value of para-
meter on the basis of a priori information.

We may suggest a second approach which consists in the paertiti-
on of the initial sample in groups such that the number of rea-
lizations of a random variable in each group be proportional to
probabilities at optimal grouping. With the large size of the
sample this approach is more preferable. It appears to be the
only possible one, if a priori information about parameters of
distribution is missing, and only one form of distribution is
assumed.

In this case we have a chanee by means of the tables of asymp-
totically optimel grouping to derive approximate maximum like-
lihood estimates of parameters of distribution.

Using the suitable table of optimal frequencies, partition the
initial sample into groups, such that the number of observation
My occurred in each one be proportional to optimal frequency,
such that n,=n (k). The choice of the number of intervals /M
is defined by the condition N Dc(k)> 1, better > 10, As & re-
sult, optimal boundary points )?,f » Pertitioning the groups,
will be approximately chosen. For instance, by way of )?,f we
may take the average between adjacent sampling values occurred
in different groups.

From the tables of optimal boundary points with the given number
of intervals the values tk which are connected with Xf with
quite definite dependence are taken. Hence, the approximate es-
timate of the unknown parameter is already easily found from
the equations 1, = Y(X56) and averaged over all kK .

In particular, the estimate of parameter & of exponential dis-
iribution is defined by the formula

A

T L >e
8 =—— ) t /X,
‘4k=1
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where /% is the number of intervals and f is chosen from tab-
le 1. Moreover, the boundary points Xk are defined in the par-
tition of the sample into groups proportionally to the probabi-
lities from table 2.
In the estimation of two paremeters of Weibull's distribution ty
from table 4 are used, and the estimates are defined by the re-
lations
6= ZZ f”fka"g”f“ (9)
n X8 ,-ln K¢
1 m"ex { lntey ln Xk = nfk fﬂXk } (10)
m-2 k=2 [/’l tk—1 -ln fk

The partition into groups of the sample is carried out proporti-
onally to the probabilities from table 5.

Example 5. Assuming, that the sample preaen‘i:ed in exam-
ple 4 corresponds to the Weibull's distribution, let us estimate
its parameters.

According to table 6 we find that it is possible to choome 5 gro-
uping intervals as minimal product n'%9(5)=5o - 0.0211=1.055 > 1.,
The msample has to be partitioned into groups proportionally to
the values 1R ({) =50 - 0.0991=4.955,n RT@=15.09, 1 B1)=22. 905,
n B ()=5.995, nPG{f) 1.055. Hence, /,=5, 11, =15, M, =23, /=6,
g =1. In the capacity of X@ we'll te.ke the average between
the sampling values occurred 1n the adjacent groups. For instan-
ce, X@ between the fifth and the sixth sampling value: X“‘ =
=0.175. Further, X£ =0.515, X§ =2, X& =5.05. From table 5 at
m =5 choose t; =0.1044, t, =0.5123, ¢; =1.959, %4 =
=3.8606. Now by formula (9) define 6 =1.065 and by formula
(10) 6; =0.8T4. Verify the goodness of fit by chi-aquare test.
The number of intervals /M =5. From table 4 in view of ¢, =
=(Xg /9,) define from relation Xk exp{lnty)se- fn91} XE =0.1371,
XS =0.6105, X§ =2.1512, X{ =4.0677.

By the sample define the number of observations occurred in each
interval: n,=4, 1,=13, 1; =27, 7, =4, N =2, Take the proba-
bilities from table 5. Compute chi-square statistic equal to
2.716., The number of degrees of freedom S = M-r-1= 5=-2-1=2,
With the significance level A =0.2 find the critical value Zzz' o=




=3.219 and, consequently, the sampling data agrees well with the
Weibull's distribution with estimated parameters.

For some other distributions expressions for estimates and tab-
les of asymptotic distribution are presented in the papers of
DENISOV [4] , LEMESHKO (5] .

References

Il

(2]

KULLDORF,G. (1966) Vvedeniye v teoriyu otsenivaniya po grup-
pirovennym i chastichno gruppirovannym vyborkam. Nauka, Mos-
kva.- 176 =s.

BODIN,N.A.(1970) Otsenke parametrov raspredeleniya po grup-
pirovannym vyborkem. Tr.matem.instituta im V.A.Steklova AN
SSSR. Vol. 111.-s.110-154

COX,D.R. (1957) Note on grouping. Journal of the American
Statistical Association. Vol.52,Nn 280, p.543-547
DENISOV,V.I.(1977) Metematicheskoye obespecheniye sistemy
EVM - experimentator. Nauka, Moskva - 251 a.
LEMESHKO,B.Yu.(1977) Otsenivaniye parametrov raspredeleniya
po gruppirovannym nabludeniyam. Voprosi kibernetiki. Moskva.
Vip.30, s. 80-96

81



