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Abstract. Problems of application of nonparametric goodnessfdit tests and )(2 type
tests have been considered.

The following points concerning the tests 01)(2 type have been considered: (a)

correctness problems in usage op(lf_r_l -distributions as the limiting distribution laws

depending on estimation method used; (b) grouping ethods providing maximal test
power for close alternative hypotheses; (c) choicef the optimal interval number by the
maximal test power. Optimal grouping tables have ben constructed.

Nonparametric tests of Kolmogorov type, W’ and Q? Mises type lose their
property of “independence from distribution” in composite hypothesis testing. The
limiting distribution laws depend on the distribution corresponding to the hypothesis
under test, number and type of estimated parameterstheir values and the estimation
method. The models of limiting distributions for nmparametric test statistics have been
constructed for a number of composite hypotheses.

Obtained results are included in the GOSSTANDART reommendations of
Russia “Applied statistics. Rules of check of expénental and theoretical distribution of
the consent”. Part 1 — Goodness—of—fit tests of gge chi-square (P 50.1.033-2001), part 2
— Nonparametric goodness—of—fit tests (P 50.1.0302)

Keywords: Tests of chi-square type, tests of Kolmogorov typsts of Mises type, composite
hypothesis testing.

The usage of the tests to verify empirical datadgess-of-fit to theoretical distribution
law is coursed by a number of conditions ensurim@@dequate problem solution. Unfortunately,
these conditions are seldom discussed in the wbdtsused as a manual. Hence, in spite of the
apparent simplicity, the practice of using the goess-of-fit tests abounds with the examples of
incorrect or inefficient use of the tests, espégial case of composite hypothesis testing.

With goodness-of-fit tests it is possible to ver#ynple hypotheses in the fornH,:
F(x) = F,(x,8), whereF, k 0 )is the probability distribution function, to whi¢the sample of
independent identically distributed observatioXs,X, ..., X, is tested for fit,® is known
parameter value (scalar or vector), and composiigotheses in the formH,:

F(x)D{F0 (%, 6),6D@}, where © is the parameter space. In composite hypothesisgethe

parameter estimat@ is calculated from the same sample.
The procedure of hypothesis checking by meang’ofests provides for splitting the
random variable domain inti intervals by boundary points
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The Pearson’s statistiX > is calculated according to the statement:
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where n — the number of observations fallen into théh interval, P(6) = J'fo(x, 0)dx — the
Xi-1
k k
probability of an observation being in theth interval, n:Zni : ZR(e) =1. If a simple
i=1 i=1
hypothesisH,, is true the limiting statistic distributioG(XﬂHo) is the x*-distribution with the

freedom degree number equalke-1. If m parameters of distribution law are estimated from
the sample by minimizing the statist? than the statistic obeys the - distribution with the

freedom degree numbde—m-— . If an alternative hypothesibl, is true the limiting statistic
distribution G(X,f|H1) is the noncentrag”- distribution with the same freedom degree number
and the noncentrality parameter

k CZ (e)
s(®) =) — = 2)
21: R(©)
% (6)
wherec (6) = Jn j(fl(x, 8) — f, (X, 9))dx and f,(x,0) corresponds to an alternative hypothesis.
%-1(6)

Originally for composite hypothesis testing andineating of the parameters from the
sample the use of;_ , -distributions as the limiting law was assumed ¢ocbrrect only if the

estimates were calculated by minimizing the stati3t?. Later it was shown thaX? has the
same y4_. ,-distribution even in case if maximum likelihoodtigmates (MLE) for grouped

observations are used.
By statistical modeling technique we have invesédadistributions of this statistic for
composite hypothesis testing and using MLE fronugea observations (for finite samples) and

it has been confirmed there is a close fit of oletdiempirical statistic distributions to thé -
distributions. Furthermore, we have revealed that . -distributions have every reason to be

used as the limiting law for the statisti’ also if the shift and scale parameters of distidou
laws under test are estimated as the linear corbirsaof sample quantiles). Statistic modeling
results confirmed that the statist? also has thex’_ ,-distributions if these estimates are

e
used.

Data grouping is evident to result in informatiovsdes and these losses depend on
grouping technique. In practice observations atalls splitted into intervals of equal length or
equiprobable intervals at the best. In these cadesmation losses as well as the ability of
criterions to distinguish close hypotheses aresbffit.

The Fisher information is a measure of inside cless between random variable
distributions, and this inside nature is associdtethe power of distinguishing between close
parameter values. As a statistic doesn’t have nrdogmation than a source sample than the
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distinguishing power by a statistic is not highleart by all sample. Hence, it is necessary to
choose such statistic, for which information lossesminimal.

In other words, the less information losses becadisgbservation grouping, the higher
power of corresponding goodness-of-fit tests foselalternative hypotheses. Information losses
can be decreased by selecting boundary pointhab] t(8) tends to the information matrix for

nongrouped datal(0), i.e. by solving asymptotically optimal groupingoplem. In case of

scalar parameter the problem reduces to the maaiioiz of Fisher information quantity on the
parameter for grouped sample

max

XX <X <X o7

K 2
(aln Pi(e)j P(©).
00
And in case of vector parameter different functlerd Fisher information matrix can be
chosen. For example, the determinant of informatr@irix can be maximized, as it has been
done in this case, i.e. to solve the problem

max detJ (0).
ASSRSIRS GRS

Generally the Fisher information matrix dependsardy on boundary points;, but on

the parameters of a tested distribution. Howevesdlying the asymptotically optimal grouping
problem interval boundary points in the invariaotni relative to distribution parameters have
been obtained and the corresponding asymptotiogliynal grouping tables have been made for
rather broad number of distributions.

Pearson’s chi-squire statistic distributions dependthe method of splitting random

variable domain into intervals [1]. Grouping methafluences the distribution@(XﬂHl) and

hence it affects the Pearson’s test power: theerwit has the maximal power for close
alternatives and asymptotically optimal grouping.

When using chi-squire goodness-of-fit tests, thisrean ambiguity in test (statistic)
construction due to the choice of number of intengand boundary points, i.e. how the random
variable domain is splitted into intervals. It iBvious that the number of intervals and the
grouping method should be chosen by the maximalpgewer. Though, this subject escapes
from any regulating documents or literary sources.

The power of chi-squire tests essentially dependsheninterval numbek. The test
power is known to decrease from a certain valud witreasing of interval numbéc. As a
matter of fact, it is possible to find the optinvalue of grouping interval number depending on a
couple of alternative hypotheses, grouping methwtithe sample siza . Knowing the limiting
distributionsG(S|H, )and G(S|H,) of the statisticS, it is possible to estimate the test power

for any significance levebr given, considering it as the function of interveimbersx @ r )
with the sample siz@ given. In [2] the power of Pearson’s test as theefion of x ¢ y )andn

was investigated analytically and by means of &iatil modeling. And the results of analytical
calculations turned out to be entirely justifiediwthe power estimates, obtained by modeling.

The power value for the tests pf type can be calculated according to the staten®nt |

o) i
1-B=P(s|r,0a) =e 92 S x
P=PEIr.a) ; j12A2r (j+r/2)

J‘ y2j =1+r e—y2/2dy ' (3)

x(a,r)
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where S is the noncentrality parameter defined by ()x r( is)@ - a) -percentage point of

X’ -distribution with r degrees of freedoma( is the given probability of error type | (alpha
error), B is the probability of error type Il (beta errorfll the power functions, represented
below, have been constructed with the significdaeel a = 0.1.

In the figure 1 the power functions of Pearsox’stest are represented depending on the
interval numberk in case of equiprobable and asymptotically optigraluping for the sample
size n equal to 500 and 5000 in testing simple hypothesi# to the exponential distribution
law (H,: f,(x) =0exd-0x} for 8=1; againstH,: f,(x) =08exg-6x} for 6= 105). In both
cases the test power decreases with the growth, diut for asymptotically optimal grouping it
is higher than in equiprobable one.
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Figure 1

The ability of any statistical criterions to distuigh hypotheses, i.e. their power,
increases with the sample size growth. Wieis small it is very difficult to distinguish a paof

close hypotheses as distributio@éﬂHo) and G(qu) turn out to be very close.

The most commonly used nonparametric goodness-t#gis include Kolmogorov tests
and alsow’ and Q? Mises tests. The value

D, = supF,(X) — F (x,8)|,

X<

where F, &) is the empirical distribution functionF x@, )s the theoretical distribution

function, andn is the sample size, is used as a distance bettheeempirical and theoretical
laws in Kolmogorov test. For testing hypothese® osually uses statistic of the form [3]

_6nD, +1
S = ein

where
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D, =max(®,,D,), D, —rgian{n F(x,e)}, D, —r]r_gian{F(&,G) - }

X, %,..., X, are sample values in increasing order, & i§ the distribution function, fit to
which is tested. The distribution of statisg in testing the simple hypothesis in the limit obey
Kolmogorov lawK & )[3].

In tests of the type 06y, the distance between the hypothetical and theedistributions
is considered in the quadratic metric

00

[{E[F.(0]- FOOFw(F (9)dF (%),
where E[[]] is the mathematical expectation operator.

In choosing(t) = 1in Mises w’ tests, one uses a statistic (Cramer — Mises —r®mir
statistic) of the form

1 2i -1)°
S,=Nof =——+> <F(x,0)-——" .
© " 12n { (%.8) Zn}

i=1

In testing a simple hypothesis it obeys the diatidn al(S) [3].
In choosing Y(t) =1/t(l-t ) in Mises Q tests, the statistic (Anderson — Darling
statistic) has the form

2i-1
2n

S, =nQ? = —n—Zi{Eln F(x,6) +(1—
i | 2n

jln(l— F (X ,9))}.

In the limit, this statistic obeys the distributia2(S) [3].

In the case of simple hypotheses, the limitingistiatdistributions of the nonparametric
Kolmogorov, w® and Q* Mises tests are known for a long time. These tastssaid to be
“distribution-free” tests. However, the nonparantetest power in testing composite hypotheses
for the same sample sizes is always much higherttiat in testing simple ones. And whereas in
testing simple hypotheses the nonparametric Kolmmgaw’ and Q® Mises tests have a lower
power compared with thg?-type tests provided that the latter use the asgtigpily optimal
grouping, in testing composite hypotheses the n@mpetric tests appear to be more powerful.
To make use of their advantages, we must merelywkhe distributionG(qHO) for the tested

composite hypotheses.

While testing composite hypotheses, when the samneple is used to estimate the
parameters of the observed l&wx g ,,the nonparametric goodness-of-fit tests loseptbperty
of “distribution—freeness”.

Paper [4] was the pioneer in investigating the tiimgi statistic distributions of the
nonparametric goodness-of-fit tests in testingdbmposite hypotheses. The literature presents
several approaches to investigating the nonpararggodness-of-fit tests in the case of testing
the composite hypotheses [5-11].

It has been found that in composite hypothesis tése conditional distribution law of

the statisticG(SHO) Is affected by a number of factors determiningtifipothesis complexity:
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the form of the observed law x @, gorresponding to the true hypothesis; the type of the

parameter estimated and the number of parametdrs &stimated; sometimes, it is a concrete
value of the parameter (e.g., in the case of gamlistabution); the method of parameter
estimation.

Constructing of the limiting distribution by anabal methods is an extremely
complicated problem. It is most suitable to use iethod of computer analysis of statistical
regularities. The method showed good results inukitimg the test statistic distributions.
Implementation of such procedure of computer amalykstatistic distributions contains neither
difficulties of principal nor practical difficulte at present. In [12-14] we constructed models
approximating the limiting statistic distributiofe some composite hypotheses.

Conclusion

Asymptotically optimal grouping maximizes the powef Pearson’sy® test and
likelihood ratio test with respect to close alteiva hypotheses for both simple and composite
hypotheses. Moreover, the asymptotically optimaluging tables contain the probability values
of an observation being in an interval, what féaiks the computation process.

The choice of too large interval number results tesver loss. The optimal interval
numberk depends on the sample sizeand the specified pair of alternative hypothelslgsand

H,. Usually the optimalk turns out to be much smaller than the numbersmesended by

different regulating documents and given by a ggeantity of empirical formulas. The maximal
test power for the given sample sireis frequently reached with the minimally possible
rather small interval numbey.

The results of research intg® test power depending on grouping method and iaterv

number as well as the tables of asymptotically matigrouping underlie the standardization
recommendations [15], developed by us.

The constructed approximations of the limiting istat distributions of the
nonparametric goodness-of-fit tests extend theoregif correct application of these tests and
may be recommended for construction of statistegllarities when it is impossible to solve the
problem analytically.

On the basis of obtained models standardizatioamerendations [16] are developed.
The percentile point tables and constructed maoofet®nparametric test statistic distributions of
Kolmogorov type, «* Mises and Q® Anderson-Darling type are represented in
recommendations [16] for testing various compoditgpotheses of goodness-of-fit to
exponential, seminormal, Rayleigh, Maxwell, Laplacermal, log-normal, Cauchy, logistic,
maximum-value, minimum-value, Weibull, gamma-, $lnidson, Sl-Johnson, Su-Johnson
distributions.
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