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Abstract. Problems of application of nonparametric goodness-of-fit tests and 2χ  type 
tests have been considered. 

The following points concerning the tests of 2χ  type have been considered: (a) 

correctness problems in usage of 2
1−−χ rk -distributions as the limiting distribution laws 

depending on estimation method used; (b) grouping methods providing maximal test 
power for close alternative hypotheses; (c) choice of the optimal interval number by the 
maximal test power. Optimal grouping tables have been constructed. 

Nonparametric tests of Kolmogorov type, 2ω  and 2Ω  Mises type lose their 
property of “independence from distribution” in composite hypothesis testing. The 
limiting distribution laws depend on the distribution corresponding to the hypothesis 
under test, number and type of estimated parameters, their values and the estimation 
method. The models of limiting distributions for nonparametric test statistics have been 
constructed for a number of composite hypotheses.  

Obtained results are included in the GOSSTANDART recommendations of 
Russia “Applied statistics. Rules of check of experimental and theoretical distribution of 
the consent”. Part 1 – Goodness–of–fit tests of a type chi-square (P 50.1.033-2001), part 2 
– Nonparametric goodness–of–fit tests (P 50.1.037-2002) 
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The usage of the tests to verify empirical data goodness-of-fit to theoretical distribution 
law is coursed by a number of conditions ensuring an adequate problem solution. Unfortunately, 
these conditions are seldom discussed in the works that used as a manual. Hence, in spite of the 
apparent simplicity, the practice of using the goodness-of-fit tests abounds with the examples of 
incorrect or inefficient use of the tests, especially in case of composite hypothesis testing. 

With goodness-of-fit tests it is possible to verify simple hypotheses in the form  0H : 

),()( 0 θ= xFxF , where ),(0 θxF  is the probability distribution function, to which the sample of 

independent identically distributed observations nXXX ,,, 21 …  is tested for fit, θ  is known 

parameter value (scalar or vector), and composite hypotheses in the form 0H : 

{ }Θ∈θθ∈ ),,()( 0 xFxF , where Θ  is the parameter space. In composite hypothesis testing the 

parameter estimate θ̂  is calculated from the same sample.  
The procedure of hypothesis checking by means of 2χ  tests provides for splitting the 

random variable domain into k  intervals by boundary points 
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The Pearson’s statistic 2nX  is calculated according to the statement: 
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hypothesis 0H  is true the limiting statistic distribution )( 0
2 HXG n  is the 2χ -distribution with the 

freedom degree number equal to 1−k . If m parameters of distribution law are estimated from 
the sample by minimizing the statistic 2nX  than the statistic obeys the 2χ - distribution with the 

freedom degree number 1−− mk . If an alternative hypothesis 1H  is true the limiting statistic 

distribution )( 1
2 HXG n  is the noncentral 2χ - distribution with the same freedom degree number 

and the noncentrality parameter  
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i dxxfxfnc  and ),(1 θxf  corresponds to an alternative hypothesis. 

Originally for composite hypothesis testing and estimating of the parameters from the 
sample the use of 2 1−−χ mk -distributions as the limiting law was assumed to be correct only if the 

estimates were calculated by minimizing the statistic 2
nX . Later it was shown that 2

nX  has the 

same 2
1χ −−mk -distribution even in case if maximum likelihood estimates (MLE) for grouped 

observations are used. 
By statistical modeling technique we have investigated distributions of this statistic for 

composite hypothesis testing and using MLE from grouped observations (for finite samples) and 
it has been confirmed there is a close fit of obtained empirical statistic distributions to the 2

1χ −−mk -

distributions. Furthermore, we have revealed that the 2
1χ −−mk -distributions have every reason to be 

used as the limiting law for the statistic 2nX  also if the shift and scale parameters of distribution 

laws under test are estimated as the linear combinations of sample quantiles). Statistic modeling 
results confirmed that the statistic 2nX  also has the 2

1−−χ mk -distributions if these estimates are 

used.  
Data grouping is evident to result in information losses and these losses depend on 

grouping technique. In practice observations are usually splitted into intervals of equal length or 
equiprobable intervals at the best. In these cases information losses as well as the ability of 
criterions to distinguish close hypotheses are different.  

The Fisher information is a measure of inside closeness between random variable 
distributions, and this inside nature is associated to the power of distinguishing between close 
parameter values. As a statistic doesn’t have more information than a source sample than the 
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distinguishing power by a statistic is not higher than by all sample. Hence, it is necessary to 
choose such statistic, for which information losses are minimal. 

In other words, the less information losses because of observation grouping, the higher 
power of corresponding goodness-of-fit tests for close alternative hypotheses. Information losses 
can be decreased by selecting boundary points so, that )(θΓJ  tends to the information matrix for 
nongrouped data )(θJ , i.e. by solving asymptotically optimal grouping problem. In case of 
scalar parameter the problem reduces to the maximization of Fisher information quantity on the 
parameter for grouped sample 
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And in case of vector parameter different functionals of Fisher information matrix can be 
chosen. For example, the determinant of information matrix can be maximized, as it has been 
done in this case, i.e. to solve the problem  

)(detmax
110

θΓ<<<< −

J
kk xxxx …

. 

Generally the Fisher information matrix depends not only on boundary points ix , but on 

the parameters of a tested distribution. However by solving the asymptotically optimal grouping 
problem interval boundary points in the invariant form relative to distribution parameters have 
been obtained and the corresponding asymptotically optimal grouping tables have been made for 
rather broad number of distributions. 

Pearson’s chi-squire statistic distributions depend on the method of splitting random 
variable domain into intervals [1]. Grouping method influences the distributions )( 1

2 HXG n  and 

hence it affects the Pearson’s test power: the criterion has the maximal power for close 
alternatives and asymptotically optimal grouping.  

When using chi-squire goodness-of-fit tests, there is an ambiguity in test (statistic) 
construction due to the choice of number of intervals and boundary points, i.e. how the random 
variable domain is splitted into intervals. It is obvious that the number of intervals and the 
grouping method should be chosen by the maximal test power. Though, this subject escapes 
from any regulating documents or literary sources. 

The power of chi-squire tests essentially depends on the interval number k . The test 
power is known to decrease from a certain value with increasing of interval number k . As a 
matter of fact, it is possible to find the optimal value of grouping interval number depending on a 
couple of alternative hypotheses, grouping method and the sample size n . Knowing the limiting 
distributions )|( 0HSG  and )|( 1HSG  of the statistic S , it is possible to estimate the test power 

for any significance level α  given, considering it as the function of interval numbers ),( rx α  
with the sample size n  given. In [2] the power of Pearson’s test as the function of ),( rx α  and n  
was investigated analytically and by means of statistical modeling. And the results of analytical 
calculations turned out to be entirely justified with the power estimates, obtained by modeling.  

The power value for the tests of 2χ  type can be calculated according to the statement [3]: 
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where s is the noncentrality parameter defined by (2), ),(rx α  is )1( α− -percentage point of 
2
rχ -distribution with r  degrees of freedom (α  is the given probability of error type I (alpha 

error), β  is the probability of error type II (beta error)). All the power functions, represented 
below, have been constructed with the significance level 1.0=α . 

In the figure 1 the power functions of Pearson’s 2χ  test are represented depending on the 
interval number k  in case of equiprobable and asymptotically optimal grouping for the sample 
size n  equal to 500 and 5000 in testing simple hypothesis of fit to the exponential distribution 
law ( 0H : { }xxf θ−θ= exp)(0  for 1=θ ; against 1H : { }xxf θ−θ= exp)(1  for 05.1=θ ). In both 

cases the test power decreases with the growth of k , but for asymptotically optimal grouping it 
is higher than in equiprobable one. 

 

 
Figure 1 

 
The ability of any statistical criterions to distinguish hypotheses, i.e. their power, 

increases with the sample size growth. When n  is small it is very difficult to distinguish a pair of 
close hypotheses as distributions )( 0HSG  and )( 1HSG  turn out to be very close.  

The most commonly used nonparametric goodness-of-fit tests include Kolmogorov tests 
and also 2ω  and 2Ω  Mises tests. The value 

),()(sup θ−=
∞<

xFxFD n
x
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where )(xFn  is the empirical distribution function, ),(θxF  is the theoretical distribution 

function, and n  is the sample size, is used as a distance between the empirical and theoretical 
laws in Kolmogorov test. For testing hypotheses, one usually uses statistic of the form [3] 
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nxxx ,,, 21 …  are sample values in increasing order, and )(xF  is the distribution function, fit to 

which is tested. The distribution of statistic KS  in testing the simple hypothesis in the limit obeys 
Kolmogorov law )(SK  [3].  

In tests of the type of 2ω , the distance between the hypothetical and the true distributions 
is considered in the quadratic metric 
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where [ ]⋅E   is the mathematical expectation operator. 

In choosing 1)( ≡ψ t  in Mises 2ω  tests, one uses a statistic (Cramer – Mises – Smirnov 
statistic) of the form  
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In testing a simple hypothesis it obeys the distribution )(1Sa  [3]. 

In choosing )1(/1)( ttt −≡ψ  in Mises 2Ω  tests, the statistic (Anderson – Darling 
statistic) has the form  
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In the limit, this statistic obeys the distribution )(2 Sa  [3]. 
In the case of simple hypotheses, the limiting statistic distributions of the nonparametric 

Kolmogorov, 2ω  and 2Ω  Mises tests are known for a long time. These tests are said to be 
“distribution-free” tests. However, the nonparametric test power in testing composite hypotheses 
for the same sample sizes is always much higher than that in testing simple ones. And whereas in 
testing simple hypotheses the nonparametric Kolmogorov, 2ω  and 2Ω  Mises tests have a lower 
power compared with the 2χ -type tests provided that the latter use the asymptotically optimal 
grouping, in testing composite hypotheses the nonparametric tests appear to be more powerful. 
To make use of their advantages, we must merely know the distribution )( 0HSG  for the tested 

composite hypotheses. 
While testing composite hypotheses, when the same sample is used to estimate the 

parameters of the observed law ),(θxF , the nonparametric goodness-of-fit tests lose the property 
of “distribution–freeness”. 

Paper [4] was the pioneer in investigating the limiting statistic distributions of the 
nonparametric goodness-of-fit tests in testing the composite hypotheses. The literature presents 
several approaches to investigating the nonparametric goodness-of-fit tests in the case of testing 
the composite hypotheses [5-11].  

It has been found that in composite hypothesis tests, the conditional distribution law of 
the statistic )( 0HSG  is affected by a number of factors determining the hypothesis complexity: 
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the form of the observed law ),(θxF  corresponding to the true hypothesis 0H ; the type of the 

parameter estimated and the number of parameters to be estimated; sometimes, it is a concrete 
value of the parameter (e.g., in the case of gamma-distribution); the method of parameter 
estimation. 

Constructing of the limiting distribution by analytical methods is an extremely 
complicated problem. It is most suitable to use the method of computer analysis of statistical 
regularities. The method showed good results in simulating the test statistic distributions. 
Implementation of such procedure of computer analysis of statistic distributions contains neither 
difficulties of principal nor practical difficulties at present. In [12-14] we constructed models 
approximating the limiting statistic distributions for some composite hypotheses.  

 
 
Conclusion 

Asymptotically optimal grouping maximizes the power of Pearson’s 2χ  test and 
likelihood ratio test with respect to close alternative hypotheses for both simple and composite 
hypotheses. Moreover, the asymptotically optimal grouping tables contain the probability values 
of an observation being in an interval, what facilitates the computation process.  

The choice of too large interval number results test power loss. The optimal interval 
number k  depends on the sample size n  and the specified pair of alternative hypotheses 0H  and 

1H . Usually the optimal k  turns out to be much smaller than the numbers recommended by 
different regulating documents and given by a great quantity of empirical formulas. The maximal 
test power for the given sample size n  is frequently reached with the minimally possible or 
rather small interval number k . 

The results of research into 2χ  test power depending on grouping method and interval 
number as well as the tables of asymptotically optimal grouping underlie the standardization 
recommendations [15], developed by us. 

The constructed approximations of the limiting statistic distributions of the 
nonparametric goodness-of-fit tests extend the region of correct application of these tests and 
may be recommended for construction of statistical regularities when it is impossible to solve the 
problem analytically.  

On the basis of obtained models standardization recommendations [16] are developed. 
The percentile point tables and constructed models of nonparametric test statistic distributions of 
Kolmogorov type, 2ω  Mises and 2Ω  Anderson-Darling type are represented in 
recommendations [16] for testing various composite hypotheses of goodness-of-fit to 
exponential, seminormal, Rayleigh, Maxwell, Laplace, normal, log-normal, Cauchy, logistic, 
maximum-value, minimum-value, Weibull, gamma-, Sb-Johnson, Sl-Johnson, Su-Johnson 
distributions. 
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