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Abstract — In the paper some statistical tests intended for 
testing of uniformity have been considered. Distributions of test 
statistics, the power of tests under different competing 
hypotheses have been studied.  Considered tests have been 
ranked by the test power. Advantages and disadvantages of 
individual tests have been shown. Also, it has been shown that the 
large part of the tests traditionally used for testing uniformity has 
the bias under some kind of competing hypotheses. It is 
underlines that special uniformity tests haven’t clear advantage 
over nonparametric goodness-of-fit tests used for testing 
uniformity in general. 

Keywords — uniform distribution, hypothesis testing, test 
statistic, test power 

I.  INTRODUCTION  

The uniform distribution is one of common distributions in 
applied mathematics statistics and probability theory. It is 
often used to describe the measurement error of some 
instruments or measuring systems. Simulation of 
pseudorandom values according to different parametric laws 
relies on sensors of uniform pseudorandom values. Parametric 
laws are urgently needed in the systems of statistical 
simulation. Testing the uniformity actually represents 
goodness-of-fit testing the hypothesis of uniform distribution 
of the observed sample 1, ..., nx x . In some papers, the authors 
states that testing composite hypothesis can be reduced to test 
simple hypothesis of uniformity on the interval [ ]0,1  because 

if 1, ..., nx x  belong law with probability distribution function 

( )F x , then random variable ( )i iy F x=
 

is uniformly 

distributed on unit interval. All of these factors explain the 
increasing interest in the choice of simple and computationally 
efficient procedures for testing hypotheses about the uniform 
law of analyzed samples.  

The various statistical tests used for testing hypothesis of 
uniformity can be divided into two subsets. These are common 
goodness-of-fit tests applicable for testing of uniformity and 
special tests oriented on testing hypothesis that sample 

1, ..., nx x  is uniform distributed. 

The presence of numerous tests put not simple problem of 
choosing for specialists, because available information in 
papers doesn’t allows to give preference to certain test, while 
every specialist is interested not only in correctness of using of 
tests, but else in reliability of statistical inferences.  

In this paper, a lot of considered tests are studied by the 
method of statistical simulations. The number of experiments 
carried out for statistical modeling is usually assumed equal to 
1 660 000 in the study of the distributions of test statistics. On 
the one hand, such number of experiments allows tracing the 
qualitative picture of test statistic distributions in depend on 
various factors. In the other hand, this number of experiments 
provides acceptable accuracy of the power estimates and 
unknown probabilities.  

II. THE STATEMENT OF TESTING UNIFORMITY 

In the most of uniformity tests, ordered statistics of 
quantity X  are used ( (1) (2) ( )... nx x x< < <

 
are elements ( )ix

 
of variation series of the sample). Further designation 

( )i iU x= , 1,i n= , will be used in expressions of statistical 

tests.
  As usually tests are oriented on testing of simple 

hypothesis 0H  on interval [ ]0,1 . However, if hypothesis of 

uniformity is tested on interval [ ],a b
 
then elements ( )ix

 
of 

variation series (1) (2) ( )... nx x x< < <
 

are modified to 

corresponding (required in the tests) ordered statistics as: 

( )i
i

x a
U

b a

−
=

−
, 1,i n= , 0 0U = , 1 1nU + = . 

To test composite hypothesis of uniformity 0H : 

( )
x a

F x
b a

−=
−

, [ , ]x a b∈ , where a  and b  are non-known, we 

proceed as follows. Using the variation series 

(1) (2) ( )... na x x x b< < < < <
 

of sample 1 2, ,..., nX X X , the 

parameter estimates are obtained as follows: 

( ) (1)
(1)ˆ

1
nx x

a x
n

−
= −

−
,  ( ) (1)

( )
ˆ

1
n

n
x x

b x
n

−
= +

−
. 

It is obviously that testing of composite hypothesis of 
uniformity for sample 1 2, ,..., nX X X

 
on interval ˆˆ[ , ]a b

 
equal 

to testing of simple hypothesis of uniformity for sample with 
sample size 2n −  on interval (1) ( ), nx x   . The required values 

of order statistics for testing such hypothesis obtained by 

expressions: ( ) (1)
1

( ) (1)

i
i

n

x x
U

x x−
−

=
−

, 2, ( 1)i n= − .   
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A number of considered tests can be divided into three 
groups. The first group has statistics based on interval between 
elements, in most of cases differences between neighbor 
elements denoted as 

1i i iD U U −= − , 

where 0 0U = , 1 1nU + = , n  is the size of the sample. In the 

second group test statistics used difference between theoretical 
(expected) and empirical data. These tests also called as tests 
based on the empirical distribution function (EDF tests), and 
goodness-of-fit tests are contained in this group. The third 
group has statistics based on entropy estimator. The third 
group includes the tests based on the entropy estimator. 

 

III. ALTERNATIVE HYPOTHESES 

We compared the power of tests for relatively sample size 
n=10, 20, 30, 40, 50, 100, 150, 200, 300. The hypothesis under 
test 0H was chosen as uniform law. Alternative hypothesis iH  

was chosen as beta distribution with the density  

0 11 1
3 3

2 0 1 2 2

1
( ) 1 .

( , )

x x
f x

θ − θ −
   − θ − θ

= −   θ Β θ θ θ θ   
 

where 0 1 0 1 0 1( , ) ( ) ( ) / ( )Β θ θ = Γ θ Γ θ Γ θ + θ  is beta-function, 

0 1, (0, )θ θ ∈ ∞  are parameters of the form, 2 (0, )θ ∈ ∞  is 

shape parameter, 3 ( , )θ ∈ −∞ ∞  is bias parameter, 2[0, ]x ∈ θ . 
This distribution was chosen because the fact that the standard 
uniform distribution is a special case of the beta distribution 
with the parameters of form 0θ =1 and 1θ =1. We denote the 
function of beta distribution with values of 
parameters 0 1 2 3( , , , )IB θ θ θ θ . So, three alternative 

hypotheses 1H , 2H , 3H , which are quite close to 0H , can be 
written by 

1H  : ( ) (1.5, 1.5, 1, 0)IF x B= , [0,1]x ∈ ; 

2H  : ( ) (0.8, 1, 1, 0)IF x B= , [0,1]x ∈ ; 

3H  : ( ) (1.1, 0.9, 1, 0)IF x B= , [0,1]x ∈ . 

The distribution functions and the density functions of these 
hypotheses are presented in Figure 1 and 2, respectively. 

It is worth noting that the distribution function of 
alternative

 1H  crossed the function of the uniform 
distribution, while the distribution functions of alternatives 

2H  and 3H  are located above and below the function of 
uniform distribution, respectively. And abilities to distinguish 
hypothesis

 0H  from 1H  and from 2H  and 3H
 
in tests are 

different. The comparative analysis shows that most of the 
considered tests have inability to distinguish hypothesis

 0H  

from 1H  under small sample size n  , in other words these 
tests are biased in such cases.  
 

 
Figure 1.  The distribution functions corresponding to the hypotheses 

 
Figure 2.  The density functions corresponding to the hypotheses 

The distributions ( )n iG Hω  of statistic of the Sherman 

test corresponding to truth of 0H  and 1H  are shown in figure 

3 for illustration of fact of bias under sample sizes  10n =   
and 50n = . 

 

 
Figure 3. The distributions ( )n iG Hω  statistic of the Sherman`s test  

 
The test is right sided, and tested hypothesis is rejected 

under large values of test statistic. As we can see, the 
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distribution of statistic 10 1( )G Hω  shifted relatively 

10 0( )G Hω  not to right, but to left under truth of 1H . 

Therefore, power 1− β  is less than corresponding α . The bias 

disappear with increasing of n  (see 50 0( )G Hω  and 

50 1( )G Hω  in figure 3).  

 

IV. SIMULATION RESULT 

The expressions for statistics of special uniformity tests are 
presented in Table 1. The description of the most considered 
tests, their test statistics and power of tests are shown in [1, 2]. 
In this case, presented in [1, 2] results of the comparative 
analysis of uniformity tests are supplemented by the research 
of Correa test [3], modified Anderson-Darling test [4], 
Hermans-Rasson test [5,6]. 

The Table 2 contains considered tests ordered by 
decreasing of power (quantity1− β ) under alternatives 1H , 

2H  and
 3H   ( 100n = , 0.1α = ).  The dark mark means that 

the test is biased under small sample size n , in other words 
that quantity α  larger than1− β . This bias take a place to a 

lesser extent in Neyman-Barton tests 2N  and 3N .  This 

disadvantage isn’t observed only for some tests: Kuper test, 
Watson test, entropy tests, Cheng-Spiring test, Swartz test, 
second Cressie test, chi-squared Pearson test, Hermans-Rasson 
test, Pardo test, Correa test and modification of Anderson-
Darling test. 

Entropy tests used different entropy estimator gives high 
power under alternative hypothesis 1H . Whereas their power 

is relatively worst under alternatives 2H  and 3H .  It should be 

noted that only modifications of entropy test have bias under 
alternative 2H

 
for small sample size n . It is recognized that 

power of these tests and also Cressie tests and Pardo test 
depends from choosing of parameter m  called as window size 
also.   

The Neyman-Barton test 2N  shows good power under 

1H  and relatively good power under 2H  and 3H .  The 

Hegazy-Green tests and Frosini test demonstrate consistently 
good ability to distinguish alternative hypotheses from 
uniformity distribution. The low powers are shown by tests, 
the statistics of which use the differences of successive values 
of order sample 1i iU U −−  (Sherman test, Kimball test, Moran 

tests, Greenwood tests, Greenwood-Quesenberry-Miller test).  
The Cheng-Spiring test, demonstrated quite high power 
under 1H , shows low power under 2H  and 3H . The lowest 

power is demonstrated by Yang test under all considered 
alternative hypotheses. Among the non-parametric goodness-
of-fit tests, the good powers are obtained by Zhang tests AZ  

and CZ  and Anderson-Darling tests. 

Only about 20 tests, concentrated at the top of the columns 
of Table 2, can be confidently recommended to use in 
statistical analysis by the reason of the received power 
estimators presented in this table. 

 

V. CONCLUSIONS 

Unfortunately, the distributions of most special uniformity 
tests depend on the sample size, therefore the researchers must 
rely on the tables of percent points. The similar issue occurs in 
using nonparametric goodness-of-fit Zhang tests. 

The decision-making about results of testing of hypothesis 
based on p-value is more reasonably than one based on 
comparison of statistic values with percent points. In [1] the 
approach permitting to find p-value estimates using statistical 
methods of modeling, for the tests, the distributions of which 
are non-known under truth of tested hypothesis, are proposed. 
This approach is implemented in the interactive mode in the 
process of the hypothesis testing. 

It is found from comparative analysis of tests, which can 
be used for testing the hypothesis of uniformity, that using of 
single certain test can be incorrect in forming the reliable 
statistical inference. The applying more than one test based on 
different measure of deviation of empirical distribution from 
theoretical distribution improves the quality of statistical 
inference. It is better to use some series of tests, which have 
certain advantages for more objective inferences. 
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TABLE 1. STATISTICS OF CONSIDERED TESTS FOR UNIFORMITY 

№  Test Test statitstic №  Test Test statitstic № Test Test statitstic 

1 Sherman 
1

1

1 1

2 1

n

n i
i

D
n

+

=
ω = −

+  6 
Hegazy-

Green 1T  1
1

1

1

n

i
i

i
T U

n n=
= −

+  11 Greenwood ( ) ( )
1

2

1

1
n

i
i

G n D
+

=
= +   

2 Kimball 
21

1

1

1

n

i
i

A D
n

+

=

 = − + 
  7 

Hegazy-
Green 

*
1T  1

*
1

1 1

1

n

i
i

i
T U

n n=

−= −
−  12 

Greenwood-
Qesenberry-

Miller 
( ) ( )

1
2

1
1 1

*
n n

i i i
i i

Q D D D
+

+
= =

= +   

3 Moran 1 ( )
1

2

1

n

i
i

B D
+

=
=   8 

Hegazy-
Green 

2T  

2

2
1

1

1

n

i
i

i
T U

n n=

 = − + 
  13 Swartz  

2
* 1 1

1

1

2 2

n
i i

n
i

U Un
A

n
+ −

=

− = − 
 

 , 

where 0 1U U= − , 1 2n nU U+ = −  

4 Moran 2 [ ]
1

1

ln ( 1)
n

n i
i

M n D
+

=
= − +  9 

Hegazy-
Green 

*
2T  

2
*
2

1

1 1

1

n

i
i

i
T U

n n=

− = − − 
  14 Cressie 1 

21
( )

0

,  
1 2

n m
m

n i m i
i

m n
S U U m

n

+ −
+

=

 = − − < + 
  

5 Yang 1
1

1
min( , )

n

i i
i

M D D
l +

=
=   10 Frosini 

1

1 0.5n

n i
i

i
B U

nn =

−= − 15 Cressie 2 ( )
1

( )

0

1
ln ,  

2

n m
m

n i m i
i

n n
L U U m

m

+ −
+

=

+ = − − <  


16 Cheng-Spiring ( ) ( )
2

2
1

1

1

1

n

p n i
i

n
W U U U U

n =

+ = − − − 
  17 Pardo ( ),

1

1 2n

m n
i m i mi

m
E

n n U U+ −=
=

−
 

18 Neyman-Barton ;kN 2,3,4k =  

2
2

2
1

j
j

N V
=

=  ,where ( )
1

1
0.5

n

j j i
i

V U
n =

= π − , ( )1 2 3y yπ = ; 

( ) ( )2
2 5 6 0,5 ;y yπ = − ( ) ( )3

3 7 20 3 ;y y yπ = −

( ) ( )4 2
4 3 70 15 0,375y y yπ = − +  

19 Dudewicz-Van Der Mulen 

( ) ( )
1

1
, ln

2

n

i m i m
i

n
H m n U U

n m + −
=

 = − − 
 

 , where m − integer and 
2

n
m ≤ ; 

if i m n+ ≥ , then i m nU U+ = , if 1i m− ≤ , then 1i mU U− =  

20 The first modification of entropy test 

( ) ( )1
1

1
ln

ˆ ˆ

n
i m i m

i m i mi

U U
HY

n F U F U
+ −

+ −=

 −= −   − 
 , where 

( ) 1

1 1

1 1ˆ ,
( 1) 1

i i
i

i i

U Un
F U i

n n n U U
−

+ −

 −−= + + + − − 
2, ( 1)i n= − ,

( ) ( )1
1ˆ ˆ1

( 1)nF U F U
n

= − =
+

 

21 The second modification of entropy test ( ) ( )
( ) ( )

( ) ( )( )
2

1

1

ˆ ˆ
ln

ˆ ˆ
ˆ ˆ

n
i m i mi m i m

n
i m i mi

j m j m
j

F U F UU U
HY

F U F U
F U F U

+ −+ −

+ −=
+ −

=

 
 

  −−  = − ×    −   −
 
 


  
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Continue Table 1   
№  Test Test statitstic 

22 Correa ( ) ( )1
, ln

1

n
C m n bin

i
=

=
 , where 

( )( )

( )

( ) ( )

;
2

( ) ( )

i m
X X j n i nj i

j i m
bi i m

X Xj i
j i m

+
− −

= −= +
−

= −




 

( )
.( ) 2 1

i m X j
X i m

j i m

+
=

+= −
  

23 Hermans-Rasson ( ),
, 1

1
sin

2

n

n i j
i j

n
T U U

n∞
=

= − −
π 

 

24 The modification of Anderson-Darling ( )
( )

( )
( ) ( ) ( )2 2 2

2 1 1
1

11

,
1 1

n
i i n n

i i
i i i n

U c U c U c
V n c c

c c c c+
=

 − − −
= + − + 

− −  
  where ( ) ( )0.375 0.25ic i n= − +  

TABLE 2. THE TESTS RANKED BY POWER (FOR 0.1; 100nα = = ) 

№  
 

hypothesis 1H  1 β−  hypothesis 2H  1 β−  hypothesis 3H  1 β−  

1 Hermans-Rasson 0.903 Anderson-Darling 0.648 Anderson-Darling 0.526 

2 The second modification of entropy test 0.883 Hegazy-Green 1T  0.610 Hegazy-Green 1T  0.522 

3 Zhang AZ  0.850 Zhang CZ  0.606 Frosini 0.522 

4 Neyman-Barton 2N  0.837 Frosini 0.603 Hegazy-Green *
1T  0.520 

5 Cressie 2 0.820 Hegazy-Green 2T  0.602 The modification of Anderson-Darling 0.519 

6 Zhang CZ  0.819 Neyman-Barton 2N  0.597 Hegazy-Green 2T  0.508 

7 Dudewicz-Van Der Mulen 0.790 Kramer-von-Misses-Smirnov 0.595 Kramer-von-Misses-Smirnov 0.507 

8 The first modification of entropy test 0.789 Hegazy-Green *
1T  0.595 Hegazy-Green *

2T   0.506 

9 Correa 0.782 Zhang KZ  0.590 Zhang CZ  0.463 

10 Watson 0.779 The modification of Anderson-Darling 0.585 Zhang AZ  0.459 

11 Neyman-Barton 3N  0.766 Hegazy-Green *
2T  0.585 Kolmogorov 0.450 

12 Neyman-Barton 4N  0.739 Neyman-Barton 3N  0.577 Neyman-Barton 2N  0.447 

13 Kuper 0.732 Zhang AZ  0.574 Zhang KZ  0.438 

14 The modification of Anderson-Darling 0.730 Neyman-Barton 4N  0.557 Neyman-Barton 3N  0.416 

15 Cheng-Spiring 0.722 Kolmogorov 0.542 Neyman-Barton 4N  0.381 

16 Zhang KZ  0.617 Pardo 0.463 2χ Pearson 0.374 

17 2χ Pearson 0.593 2χ Pearson 0.448 Pardo 0.291 

18 Swartz 0.583 Kuper 0.364 Dudewicz-Van Der Mulen 0.275 
19 Anderson-Darling 0.505 Watson 0.356 The first modification of entropy test 0.275 

20 Hegazy-Green *
1T  0.443 The first modification of entropy test 0.328 The second modification of entropy test 0.267 

21 Hegazy-Green *
2T  0.409 Dudewicz-Van Der Mulen 0.327 Corea 0.267 

22 Pardo 0.408 Cressie 1 0.314 Watson 0.257 
23 Frosini 0.384 Correa 0.313 Kuper 0.254 
24 Kramer-von-Misses-Smirnov 0.358 The second modification of entropy test 0.266 Cressie 2 0.226 

25 Hegazy-Green 1T  0.322 Greenwood-Qesenberry-Miller 0.244 Cressie 1 0.218 

26 Kolmogorov 0.322 Swartz 0.226 Swartz 0.206 

27 Hegazy-Green 2T  0.308 Cressie 2 0.217 Greenwood-Qesenberry-Miller 0.186 

28 Greenwood-Qesenberry-Miller 0.290 Sherman 0.204 Kimball 0.165 
29 Kimball 0.279 Kimball 0.201 Moran 1 0.165 
30 Moran 1 0.279 Moran 1 0.201 Greenwood 0.165 
31 Greenwood 0.279 Greenwood 0.201 Sherman 0.154 
32 Sherman 0.215 Moran 2 0.193 Moran 2 0.143 
33 Cressie 1 0.187 Hermans-Rasson 0.169 Hermans-Rasson 0.110 
34 Moran 2 0.187 Cheng-Spiring 0.168 Cheng-Spiring 0.106 
35 Yang 0.115 Yang 0.108 Yang 0.104 
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