
Statistical simulation methods have been applied to the distributions of classical statistics used in testing

hypotheses on variance in a series of samples. The statistics used in the Bartlett and Cochran tests have

been derived as tables of percentage points, which are used in observed laws describing an exponential

family of distributions.
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In statistical quality control, one usually checks for perturbations on tests that check hypotheses on the constancy of

the variances in a control parameter or equality of that parameter to some nominal value. Analogous problems in hypothesis

testing arise in measurements. Published sources [1, 2] and standards [3] deal with the use of Bartlett [4] and Cochran [5]

tests, in hypothesis testing on equality of the variances of a set of samples. In [3], Cochran’s test is envisaged for identifying

excursions in physicochemical measurements.

The following is the hypothesis tested on the constancy of the variance in m sets:

H0 : σ1
2 = σ2

2 = ... = σ2
m,

which a competing hypothesis is

where the inequality is obeyed at least for one pair of subscripts i1, i2.

For example, in monitoring some parameter, hypothesis H1 leads one to assert that at least for two instants in sam-

pling from a general set of sampling instants m (m samples taken at different times), the variance has different values.

The basic assumption in constructing the Bartlett and Cochran tests and deriving the limiting distributions of the

statistics for them is that a normal distribution applies for the observed random quantities (measurement errors).

The errors of measuring instruments far from always are described by normal distributions [6]; it is clear also that

in quality control, deviations in the monitored parameter from the nominal (given) value when the process is stationary do

not always obey a normal law. The process may satisfy the conditions imposed, e.g., the mathematical expectation coincides

with the nominal value of the parameter, while the variance does not exceed a given value.
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How do these tests behave when the errors of the measurements are not normally distributed? Is it possible to use

these tests in their classical form in a varying situation or what actions lead to incorrect results?

We examined the distributions of the statistics for these tests with various degrees of deviation (measurement errors)

from normal distribution and thus devised recommendations on using those tests under such conditions. These results sup-

plement [7] on the behavior of the statistics used in testing hypotheses on the variances and mathematical expectations. As in

[7], we used a method of statistical simulation and computer analysis that has been found to be sound in studying statistical

regularities in [8,9].

Bartlett test. The statistic for the Bartlett test is given by [2]:

(1)

where νi = ni if the mathematical expectation is known or νi = ni – 1 if it is unknown (ni are the sample volumes); 

where Si
2 are the estimators for the sample variances.

If the mathematical expectation is unknown, the estimators are

where νi = ni – 1; if hypothesis H0 is true, all the νi > 3 and the samples are extracted from a normal pop-

ulation, then the (1) statistic approximately obeys a χ2
m–1 distribution.

If the measurements are normally distributed, the distribution for the (1) statistic is almost independent of the sam-

ple volume. Figure 1 shows virtually coincident distributions for the Bartlett statistic of (1) with various sample volumes

(n = 10,50,and 100). This means that if the measurements fit a normal distribution, the conclusions remain correct even for

very small volumes in the samples.

On the other hand, the distribution of the (1) statistic is very sensitive to deviations in the observed law from nor-

mal. The form of the (1) statistic distribution has been examined for various observed laws, in particular for the case where

the samples fit a logit law with density

a Laplace law with density

and an exponential family of distributions with various shape parameters and density
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where θ3 is the shape parameter. The normal and Laplace distributions are particular cases of this family with values for the shape

parameter of 2 and 1 respectively. Family (2) may be a good model for the error distributions for various measuring systems.

Figure 2 shows how the distributions for statistic (1) are dependent on the form of the observed law for various sam-

ple volumes. When the distribution of the observed parameter deviates from a normal law, distribution for the (1) Bartlett

statistic differs substantially from a χ2
m–1 distribution. The distribution of the statistic becomes more dependent on the sam-

ple volume than is the case for the normal law.

Consequently, if one operates with a classical limiting χ2
m–1 distribution when the observed quantity fits a Laplace

distribution or a logit one, there is a high probability of rejecting the hypothesis H0 on equality of the variances even when

the hypothesis is correct. Figure 3 shows how the distribution of the Bartlett statistic alters if the measurement results belong

to the exponential family with various values of the shape parameter. The shapes show that when the measurement results

belong to an exponential family more flat-topped than a normal one, then if one uses the classical limiting distribution, there

is a high probability of taking the hypothesis H0 as incorrect.
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Logit, n = 100

n = 20

Laplace, n = 100
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Normal, n = 20

n = 100

Fig. 1. Distributions for the classical Bartlett statistic for various sample

volumes and m = 5.

Fig. 2. Distributions for the Bartlett statistic when the observed parameter

differs from a normal distribution for various sample volumes and m = 5.



The Fig. 3 picture illustrates well the arguments [10] presented in [11] on the use of the classical Bartlett test [4]

when the assumptions about normality are violated. If the distribution of the observed quantities is more flat-topped than a

normal one (with negative values for the coefficient of excess

γ2 = µ4/σ4 – 3 < 0,

with µ4 = E[X – µ)4] the fourth central moment and σ2 the variance),the classical Bartlett test [4] conceals the difference in

the variances,while if it is more sharp-peaked (with γ2 > 0), it finds a difference in the variances that is not present (Figure 6

shows the analogous picture for the Cochran test).

For distributions deviating from normal, the distributions of the Bartlett statistic are dependent substantially on the

sample volume n, but they converge quite well to certain limiting laws.

If the observed quantities belong to an exponential family of distributions,we have used Monte Carlo simulation to

construct tables for the upper percentage points (1,5, and 10%) of the Bartlett statistic for shape parameters θ3 = 0.5,1, 3, 5,

and 10 for various m and n. The percentage points were constructed from the simulated empirical distribution for the statis-

tics of volume 50000 with averaging over a series of experiments. In the case of the Laplace distribution (θ3 = 1), Table 1

gives the percentage points obtained.

Cochran Test.Here, when all the ni are identical (n1 = n2 = ... = nm = n), one can use the simpler Cochran test. The

statistic Q for the Cochran test is [2]

Q = S2
max/(S1

2 + S2
2 + ... + S2

m), (3)

where S2
max = max(S1

2, S2
2, ..., S2

m) and m is the number of independent variance estimators (number of samples).

The distribution of the Cochran statistic is very much dependent on the sample volume, so the reference literature

gives only tables of the percentage points [2],which are used in hypothesis testing. Fig. 4 shows computer simulation results

for the distribution of the (3) statistic with various sample volumes. In this case, the number of variance estimators is m = 5.

The Cochran test resembles the Bartlett one in being used on the assumption that the measurements fit a normal dis-

tribution, so interest attaches to the changes in the distribution for the Cochran statistic of (3) with certain deviations of the

measurements (control parameter) from a normal distribution. Figure 5 shows the distribution of the (3) statistic when H0 is

correct for the quality of the variances and the samples belong to various laws:normal, logit, and Laplace. The differences in

the (3) statistic distributions persist for any sample volumes.

963

Fig. 3. Distributions of the Bartlett statistic for distributions in the exponential

family De(θ3) with various shape parameters for n = 100 and m = 5.



Figure 6 shows that there are substantial changes in the Cochran statistic distribution if the measurements fit a dis-

tribution in the exponential family for the various shape parameters. The form of the (3) statistic distribution (Figs. 5 and 6)

indicates that if the measurement results violate the assumption of normality, but this is not considered, then the hypothesis

on equality of the variances may be rejected with a high probability although it is correct and may be adopted in the case

when it is incorrect.

It has been asserted [2] that the Cochran test is somewhat inferior in power to the Bartlett one. The distributions for

the Cochran statistic are very much dependent on the sample volume even for a normal distribution and are very much depen-

dent on the form of the observed law. It might seem that this makes it unsuitable for arbitrary observed laws, but in fact our

studies have shown that the Cochran test is more powerful than the Bartlett one if the observations fit a normal distribution.

For example, Table 2 gives values for the power 1 – β of these tests relative to three distinct alternatives with vari-

ous sample volumes n for probabilities of errors of the first kind α = 0.1,0.05,and 0.01. The competing hypothesis suppos-
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TABLE 1. Upper Percentage Points (α·100%) for the Bartlett Statistic Constructed from m Independent

Variance Estimates,Each of Which with ν = n – 1 Degrees of Freedom. The Sample Belongs to the

Distribution in the Exponential Family with Shape Parameter θ3 = 1 (Laplace distribution)

m n
α

0.15 0.1 0.05 0.02 0.01

10 3.96 5.10 7.04 9.57 11.37

2 50 4.78 6.21 8.78 12.29 14.93

100 4.92 6.42 9.07 12.70 15.43

10 7.25 8.71 11.16 14.27 16.51

3 50 8.78 10.63 13.74 17.79 20.80

100 8.95 10.83 14.06 18.29 21.40

10 10.29 11.98 14.78 18.24 20.82

4 50 12.26 14.40 17.91 22.42 25.80

100 12.63 14.83 18.52 23.30 26.87

10 13.04 14.96 18.09 21.93 24.81

5 50 15.65 18.02 21.93 26.83 30.54

100 16.05 18.47 22.48 27.69 31.54

10 15.75 17.85 21.23 25.43 28.49

6 50 18.75 21.31 25.51 30.76 34.63

100 19.22 21.87 26.23 31.45 35.43

10 18.35 20.60 24.19 28.66 31.98

7 50 21.87 24.63 29.06 34.63 38.71

100 22.45 25.30 29.87 35.60 39.87

10 21.00 23.37 27.22 32.08 35.66

8 50 24.88 27.79 32.50 38.26 42.49

100 25.59 28.58 33.41 39.50 43.77

10 23.53 26.06 30.05 35.10 38.65

9 50 27.88 30.96 35.90 42.09 46.44

100 28.53 31.71 36.72 43.11 47.48

10 26.04 28.68 32.99 38.18 41.85

10 50 30.78 33.98 39.20 45.36 49.88

100 31.55 34.82 40.14 46.72 51.32
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Logit, n = 17

n = 37

Laplace, n = 17

n = 37

Normal, n = 17

n = 37

Normal

Fig. 4. Distributions for the Cochran statistic with various sample volumes with m = 5.

Fig. 5. Distributions for the Cochran statistic for deviations in the distribution of the observed

parameter from normal with various sample volumes and m = 5.

Fig. 6. Distributions for the Cochran statistic in the case of distributions in the exponential

family with various values for the shape parameter with n = 17 and m = 5.



es that one of the sets,e.g., the set with number m, has a somewhat different variance. We considered the alternatives

H1
1 : σm = 1.05σ0; H1

2 : σm = 1.1σ0; and H1
3 : σm = 1.2σ0; the other m – 1 samples belonged to a normal distribution having

σ = σ0 (H0 : σ1
2 = σ2

2 = ... = σ2
m = σ0

2). The powers in Table 2 are given for m= 5 and sufficiently large sample volumes,since

for small n the power of these tests is very low, i.e., the capacity to distinguish similar alternatives.

The [3] proposes using the Cochran test for small sample volumes n = 2–6,so it must be borne in mind that for such

values of n, one can distinguish fairly reliably only fairly remote alternatives,where the variances differ by large factors.
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TABLE 2. Power 1 – β of the Bartlett and Cochran Tests with Respect to the Alternatives H1
1, H1

2, H1
3

n α
H1

1 : σm = 1.05σ0 for tests H1
2 : σm = 1.1σ0 for tests H1

3 : σm = 1.2σ0 for tests

Bartlett Cochran Bartlett Cochran Bartlett Cochran

0.1 0.1706 0.2342 0.3600 0.4778 0.8346 0.9196

200 0.05 0.1030 0.1078 0.2534 0.3022 0.7568 0.8370

0.01 0.0274 0.0306 0.1064 0.1362 0.5558 0.6708

0.1 0.2608 0.3488 0.6712 0.7976 0.9968 0.9990

500 0.05 0.1682 0.1938 0.5554 0.6598 0.9926 0.9974

0.01 0.0608 0.0726 0.3330 0.4288 0.9702 0.9860

0.1 0.4556 0.4990 0.9432 0.9686 0.9998 1

1000 0.05 0.3340 0.3816 0.8998 0.9410 0.9998 1

0.01 0.1368 0.2034 0.7422 0.8560 0.9996 1

TABLE 3. Upper Percentage Points (1%) for the Cochran Statistic Constructed from m Independent

Variance Estimators Each of Which Has ν Degrees of Freedom. The Samples Belong to a Distribution

of the Exponential Family with Shape Parameter θ3 = 1 (Laplace distribution)

m
ν

1 2 3 4 5 6 7 8 9 10 16 36 144

2 – 0.997 0.990 0.978 0.975 0.965 0.949 0.939 0.926 0.917 0.872 0.786 0.659

3 0.997 0.970 0.941 0.908 0.886 0.866 0.841 0.827 0.808 0.791 0.724 0.606 0.475

4 0.981 0.931 0.881 0.855 0.800 0.787 0.744 0.734 0.704 0.710 0.612 0.499 0.372

5 0.953 0.888 0.829 0.775 0.735 0.700 0.672 0.655 0.635 0.622 0.538 0.415 0.307

6 0.936 0.836 0.765 0.730 0.676 0.638 0.615 0.593 0.576 0.552 0.470 0.363 0.259

7 0.897 0.796 0.727 0.678 0.619 0.592 0.578 0.550 0.521 0.505 0.420 0.325 0.228

8 0.874 0.772 0.683 0.624 0.577 0.555 0.520 0.499 0.471 0.457 0.380 0.287 0.202

9 0.846 0.731 0.654 0.596 0.550 0.510 0.485 0.453 0.440 0.424 0.342 0.263 0.180

10 0.824 0.715 0.609 0.553 0.511 0.479 0.450 0.425 0.406 0.394 0.322 0.242 0.164

12 0.774 0.648 0.565 0.501 0.458 0.427 0.396 0.377 0.361 0.347 0.282 0.209 0.138

15 0.716 0.577 0.496 0.450 0.394 0.366 0.340 0.328 0.304 0.297 0.242 0.176 0.113

20 0.624 0.501 0.408 0.355 0.327 0.303 0.279 0.269 0.251 0.239 0.190 0.134 0.086

24 0.572 0.441 0.369 0.320 0.295 0.263 0.245 0.230 0.218 0.207 0.164 0.115 0.072

30 0.512 0.383 0.315 0.274 0.257 0.218 0.206 0.197 0.184 0.173 0.137 0.094 0.059

40 0.428 0.321 0.258 0.221 0.200 0.184 0.163 0.154 0.143 0.137 0.106 0.073 0.045

60 0.331 0.246 0.194 0.167 0.144 0.128 0.118 0.106 0.103 0.097 0.074 0.050 0.031



967

TABLE 4. Upper Percentage Points (5%) for the Cochran Statistic Constructed from m Independent

Variance Estimators Each of Which Has ν Degrees of Freedom. The Samples Belong to a Distribution

of the Exponential Family with Shape Parameter θ3 = 1 (Laplace distribution)

m
ν

1 2 3 4 5 6 7 8 9 10 16 36 144

2 0.999 0.984 0.966 0.947 0.928 0.910 0.894 0.885 0.870 0.862 0.815 0.728 0.623

3 0.978 0.924 0.879 0.842 0.804 0.784 0.760 0.740 0.725 0.710 0.641 0.548 0.443

4 0.938 0.852 0.803 0.747 0.706 0.679 0.658 0.635 0.623 0.604 0.534 0.447 0.346

5 0.894 0.788 0.717 0.683 0.647 0.606 0.585 0.557 0.547 0.524 0.466 0.377 0.284

6 0.857 0.737 0.662 0.616 0.570 0.551 0.526 0.495 0.482 0.464 0.407 0.327 0.239

7 0.811 0.690 0.620 0.570 0.530 0.500 0.481 0.454 0.435 0.421 0.364 0.283 0.210

8 0.765 0.650 0.571 0.529 0.492 0.460 0.433 0.416 0.398 0.389 0.333 0.256 0.185

9 0.736 0.609 0.547 0.501 0.452 0.431 0.407 0.390 0.371 0.357 0.303 0.233 0.167

10 0.710 0.578 0.511 0.465 0.426 0.398 0.379 0.359 0.344 0.330 0.276 0.214 0.152

12 0.652 0.531 0.461 0.415 0.379 0.353 0.333 0.319 0.306 0.296 0.244 0.182 0.128

15 0.590 0.466 0.406 0.357 0.329 0.306 0.285 0.276 0.262 0.246 0.204 0.151 0.104

20 0.508 0.394 0.340 0.297 0.269 0.251 0.234 0.220 0.208 0.200 0.163 0.117 0.080

24 0.461 0.348 0.304 0.264 0.241 0.222 0.207 0.191 0.182 0.172 0.139 0.100 0.067

30 0.401 0.307 0.258 0.224 0.202 0.187 0.170 0.163 0.153 0.146 0.115 0.082 0.055

40 0.338 0.263 0.212 0.182 0.167 0.148 0.139 0.130 0.120 0.106 0.083 0.064 0.042

60 0.262 0.195 0.159 0.137 0.120 0.109 0.100 0.093 0.087 0.084 0.064 0.045 0.029

TABLE 5. Upper Percentage Points (10%) for the Cochran Statistic Constructed from m Independent

Variance Estimators Each of Which Has ν Degrees of Freedom. The Samples Belong to a Distribution

of the Exponential Family with Shape Parameter θ3 = 1 (Laplace distribution)

m
ν

1 2 3 4 5 6 7 8 9 10 16 36 144

2 0.996 0.969 0.942 0.917 0.894 0.874 0.857 0.849 0.832 0.823 0.776 0.698 0.606

3 0.955 0.879 0.826 0.788 0.756 0.730 0.711 0.688 0.672 0.661 0.597 0.519 0.428

4 0.895 0.796 0.740 0.691 0.653 0.624 0.605 0.581 0.572 0.555 0.496 0.420 0.332

5 0.842 0.720 0.657 0.615 0.586 0.552 0.534 0.511 0.499 0.483 0.428 0.351 0.273

6 0.790 0.671 0.604 0.554 0.518 0.495 0.479 0.448 0.439 0.424 0.375 0.305 0.231

7 0.743 0.621 0.559 0.509 0.474 0.455 0.432 0.410 0.394 0.381 0.334 0.267 0.202

8 0.698 0.575 0.517 0.472 0.440 0.415 0.389 0.374 0.364 0.355 0.302 0.238 0.178

9 0.669 0.547 0.485 0.441 0.407 0.384 0.368 0.352 0.333 0.320 0.278 0.217 0.160

10 0.637 0.522 0.457 0.412 0.379 0.358 0.341 0.325 0.311 0.298 0.255 0.200 0.146

12 0.585 0.468 0.408 0.367 0.343 0.316 0.299 0.286 0.274 0.265 0.222 0.170 0.123

15 0.522 0.412 0.355 0.321 0.295 0.274 0.255 0.244 0.237 0.220 0.186 0.141 0.100

20 0.446 0.347 0.298 0.265 0.237 0.226 0.209 0.199 0.187 0.180 0.148 0.110 0.077

24 0.403 0.309 0.266 0.232 0.214 0.195 0.184 0.171 0.163 0.156 0.128 0.094 0.065

30 0.351 0.270 0.227 0.200 0.181 0.167 0.152 0.147 0.139 0.130 0.106 0.077 0.053

40 0.297 0.226 0.186 0.162 0.148 0.132 0.123 0.118 0.109 0.117 0.091 0.060 0.040

60 0.230 0.173 0.140 0.121 0.107 0.096 0.090 0.085 0.079 0.076 0.059 0.042 0.028



If the observed quantities fit distributions in the exponential family, tables can be constructed for the upper percent-

age points (1,5, and 10%) of the Cochran statistic for shape parameters θ3 = 0.5,1, 3, 5, and 10 with various m and n. The

percentage points have been constructed from Monte Carlo simulation and were derived from the simulated experimental dis-

tributions of the statistics with volumes of 50000 and averaging over a series of experiments. In the case of the Laplace dis-

tribution (θ3 = 1), the percentage points are given in Tables 3–5.

The Bartlett and Cochran tests are thus extremely sensitive to deviations from normal in the measurement results

(observed parameter). Correct use of those tests requires a knowledge of the distributions for the statistics for particular dis-

tributions for the observed random quantities. If the observed distribution differs from normal, one cannot apply the classi-

cal results. When the observed random quantities are closely described by distributions from the exponential family with a

certain shape parameter θ3, one can use the tables for the corresponding upper percentage points given here.

If regular checks are needed on the variance hypotheses for a certain particular model for the observed distribution,

one can recommend the use of Monte Carlo simulation to derive under these conditions the distributions of the Bartlett or

Cochran statistics followed by computer analysis of the regularities.
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