
This is an examination of models of statistical distributions and tables of percentage points for application

of the Kuiper and Watson tests of goodness-of-fit for composite hypotheses belonging to samples with

different parametric models of their probability distributions. An interactive simulation method is presented

which can be used for the construction and use of a statistical distribution of a test in the course of the

statistical analysis associated with hypothesis testing.

Keywords: nonparametric goodness-of-fit testing, Kuiper and Watson tests, simple and composite tests.

It has been shown in a study [1] of the statistical distribution and power of the nonparametric Kuiper [2] and Watson [3]

tests that they have some advantage in power for the testing of simple hypotheses over the Kolmogorov, Cramer–Mises–Smirnov,

and Anderson–Darling tests. This means that they can be recommended for various applications. This clear advantage does

not show up in the testing of composite hypotheses, but it is evident that the Kuiper and Watson tests are appropriate for use

along with these other tests of goodness-of-fit.

When testing composite hypotheses of the form H0: F(x) ∈ {F(x, θ), θ ∈ Θ}, where an estimate q of the scalar or

vector parameter of the distribution F(x, θ) is calculated for the same sample, the nonparametric tests of goodness-of-fit lose

their freedom from distributions [4]. The conditional distributions G(S⏐H0) of the test statistics during comparison of com-

posite hypotheses depend on a number of factors [5]: the form of the observed distribution F(x, θ) corresponding to the cor-

rect tested hypothesis H0; the type of parameters to be estimated and their number; in some cases, the specific value of the

parameter (e.g., for the family of gamma- and beta-distributions); the method for evaluating the parameters. The differences

in the distributions of a given statistic for testing simple and composite hypotheses are so large that neglecting this fact gen-

erally leads to incorrect use of a test and, therefore, to incorrect statistical conclusions.

Various approaches have been used for verifying composite hypotheses with the aid of the Kolmogorov,

Cramer–Mises–Smirnov, and Anderson–Darling tests [6–11], as well as a computer approach and statistical modelling [12, 13],

which have served as a basis for the development of recommendations for the application of nonparametric tests of goodness-

of-fit [14, 15]. These results were refined and extended later [16–24], and are most fully discussed in a recent article [5].

For testing the hypothesis that a random sample obeys a continuous distribution F(x, θ) by the Kuiper test [2], one

uses a statistic of the form

which is calculated with

(1)

where Fn(x) is the empirical distribution function;
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and xi are the elements of a variation series constructed from the sample.

As the limiting distribution G(√⎯nVn⏐H0) of the statistic √⎯nVn, Kuiper [2] gives the distribution function

In order to reduce the dependence of the distribution G(Vn⏐H0) of the statistic (1) on the sample size n, a modifica-

tion has been proposed [25]:

(2)

Following [26], in [1] the following statistic has been proposed for use in the Kuiper test:

(3)

In the testing of simple hypotheses, the percentage points and distributions of the (2) and (3) statistics are essentially

the same, and the limiting distribution of the statistic (3) can be modelled by a beta distribution of the third kind with density [1]:

(4)

where X = (x – θ4) /θ3 and the parameter vector q = (7.8985; 7.6865; 2.6852; 2.6373; 0.493)T.

The Watson test [3] is used with a statistic of the form

(5)

In testing simple hypotheses, the limiting distribution G(Un
2⏐H0) of the statistic (5) is given by [3]

and is approximated well over the entire range of definition by the model of an inverse gaussian distribution with density [1]

(6)

where Y = (x – θ3) /θ2 and the parameter vector q = (0,5555; 0,2385; 0,3437; 0,0015)T.

In the following, we present models of limiting distributions and tables of percentage points for the use of the Kuiper

and Watson tests for composite hypotheses according to which samples obey different parametric distribution models. It is

assumed that maximum likelihood estimates are used.

Table 1 lists some distributions with respect to which composite hypotheses can be tested using the approximations

constructed in this paper for the limiting distributions of the statistics of nonparametric tests of goodness-of-fit.
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Distribution name Density function ƒ(x, θ)
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1

0
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TABLE 1. Distributions of Random Quantities



Tables of the percentage points and models of the distributions of the test statistics have been constructed from mod-

elled samples of the statistics of size N = 1.7·106. For this N, the difference between the true distribution G(S⏐H0) for the dis-

tribution of the statistic and the modelled empirical distribution GN(S⏐H0) has a modulus of less than 10–3. The values of

the test statistics were calculated from samples of pseudorandom quantities of size n = 103 generated in accordance with the

observed distribution F(x, θ). In this situation, the distribution G(Sn⏐H0) is essentially the same as the limiting G(S⏐H0). It is

possible to use the models given here in statistical analysis problems beginning with sample sizes n > 25.

The distributions G(S⏐H0) for the statistics of the Kuiper and Watson tests are best approximated by a family of beta

distribution of the third kind with density (4), i.e., B3(θ0, θ1, θ2, θ3, θ4) = ƒ(x) and by the family of Sl-Johnson distributions

Sl(θ0, θ1, θ2, θ3) (see Table 1).

The upper percentage points and models constructed for the limiting distributions of the statistics for the Kuiper test

in the case where a maximum likelihood estimate is used are shown in Table 2 for 12 of the distributions (the last three in

Table 1 are omitted). The upper percentage points and models constructed for the distributions of the statistics for the Watson

test are listed in Table 3 for the same distributions.

Table 4 lists the upper percentage points and models of the limiting distributions for the statistics of the nonpara-

metric tests of goodness-of-fit in the case where composite hypotheses are being tested with respect to the Sb-Johnson dis-

tribution (with a maximum likelihood estimate), Table 5 gives the same for the Sl-Johnson distribution, and Table 6, for the

Su-Johnson distribution. In all these cases, the distribution G(S⏐H0) of the statistics of the goodness-of-fit test is independent

of the specific values of the unknown parameters of the distributions F(x, θ).

Distribution name
Parameters 

to be estimated

Percentage points
Model

0.1 0.05 0.01

Exponential,
Rayleigh, Maxwell

Scale 1.540 1.661 1.905 B3(5.5932; 7.6149; 2.1484; 2.3961; 0.5630)

Half-normal Scale 1.543 1.664 1.907 B3(11.4707; 40.7237; 7.020; 20.3675; 0.3989)

Laplace

Scale 1.469 1.587 1.825 B3(7.8324; 8.3778; 2.6906; 2.4820; 0.4830)

Shift 1.473 1.597 1.850 B3(9.1630; 6.6097; 4.0210; 2.4081; 0.4900)

Both parameters 1.278 1.365 1.541 B3(10.0376; 7.8452; 3.4694; 1.9586; 0.4756)

Normal, log-normal

Scale 1.494 1.611 1.847 B3(6.3057; 8.1797; 2.3279; 2.4413; 0.5370)

Shift 1.540 1.662 1.908 B3(5.5932; 7.6149; 2.1484; 2.3961; 0.5630)

Both parameters 1.402 1.505 1.709 B3(7.4917; 8.0016; 2.4595; 2.1431; 0.4937)

Cauchy
Scale or shift 1.435 1.560 1.815 B3(3.8425; 5.9345; 2.4284; 2.1927; 0.6150)

Both parameters 1.126 1.197 1.337 B3(9.4267; 7.5349; 3.2515; 1.5491; 0.4700)

Logistic

Scale 1.470 1.588 1.826 B3(9.7224; 7.8186; 3.2399; 2.4541; 0.4370)

Shift 1.511 1.633 1.880 B3(9.1363; 6.9693; 3.4630; 2.3985; 0.4790)

Both parameters 1.337 1.432 1.622 B3(14.3460; 18.6137; 3.6366; 3.9560; 0.3525)

Extreme values and

Weibull

Scale1 1.504 1.622 1.861 Sl(1.2459; 4.0123; 1.3063; 0.1873)

Shift2 1.540 1.662 1.908 B3(5.5932; 7.6149; 2.1484; 2.3961; 0.5630)

Both parameters 1.411 1.516 1.726 Sl(1.4012; 5.0846; 1.4465; –0.0070)

Notes: 1,2 the shape and scale of the Weibull distribution are estimated here.
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Parameters to be

estimated

Percentage points
Model

0.1 0.05 0.01

Kuiper test

θ0 1.540 1.662 1.908 B3(5.5932;  7.6149; 2.1484; 2.3961; 0.5630)

θ1 1.494 1.611 1.847 B3(6.3057; 8.1797; 2.3279; 2.4413; 0.5370)

θ0, θ1 1.402 1.505 1.709 B3(7.4917; 8.0016; 2.4595; 2.1431; 0.4937)

Watson test

θ0 0.127 0.157 0.228 B3(3.6769; 4.4438; 9.8994; 0.6805; 0.0082)

θ1 0.122 0.151 0.221 B3(8.8122; 3.7536; 29.8074; 0.7171; 0.0019)

θ0, θ1 0.096 0.116 0.164 B3(3.5230; 4.4077; 9.2281; 0.4785; 0.0104)

Distribution name
Parameters 

to be estimated

Percentage points
Model

0.1 0.05 0.01

Exponential,
Rayleigh, Maxwell

Scale 0.129 0.159 0.230 B3(4.0419; 2.9119; 10.5931; 0.5000; 0.0096)

Half-normal Scale 0.131 0.161 0.232 B3(4.9988; 3.8721; 15.1781; 0.6900; 0.0059)

Laplace

Scale 0.115 0.144 0.214 B3(9.2136; 3.8610; 30.5491; 0.7010; 0.0015)

Shift 0.111 0.139 0.209 B3(7.4479; 3.2650; 30.7784; 0.6227; 0.0063)

Both parameters 0.071 0.084 0.114 B3(9.0116; 5.3554; 17.3201; 0.3908; 0.0038)

Normal, log-normal

Scale 0.122 0.151 0.221 B3(8.8122; 3.7536; 29.8074; 0.7171; 0.0019)

Shift 0.127 0.157 0.228 B3(3.6769; 4.4438; 9.8994; 0.6805; 0.0082)

Both parameters 0.096 0.116 0.164 B3(3.5230; 4.4077; 9.2281; 0.4785; 0.0104)

Cauchy
Scale or shift 0.105 0.133 0.203 Sl(2.7778; 1.5065; 0.2690; 0.0049)

Both parameters 0.052 0.061 0.081 B3(8.3558; 4.8650; 12.0768; 0.1930; 0.0049)

Logistic

Scale 0.115 0.144 0.214 B3(9.2136; 3.8610; 30.5491; 0.7010; 0.0015)

Shift 0.119 0.148 0.218 B3(3.9730; 3.9414; 13.2655; 0.6637; 0.0090)

Both parameters 0.081 0.098 0.135 B3(4.2608; 4.6784; 9.3054; 0.3810; 0.0084)

Extreme values and

Weibull

Scale1 0.122 0.151 0.221 B3(8.8122; 3.7536; 29.8074; 0.7171; 0.0019)

Shift2 0.129 0.159 0.230 B3(4.9988; 3.8721; 15.1781; 0.6792; 0.0061)

Both parameters 0.097 0.118 0.165 Sl(1.2863; 1.6736; 0.0927; 0.0052)

Notes: 1,2 as in Table 2.
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TABLE 3. Upper Percentage Points and Models of the Limiting Distributions of the Statistics for the Watson Test with
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TABLE 4. Upper Percentage Points and Models for the Limiting Distributions of the Statistics of Nonparametric Tests of

Goodness-of-Fit for Testing of Hypotheses with Respect to Sb-Johnson Distributions with Use of Maximum Likelihood Estimates



When the distributions of the statistics of the nonparametric tests of goodness-of-fit depend on the values of the

parameter or parameters of the distribution with which goodness-of-fit is being tested, the problem can be solved in the fol-

lowing way. Since the estimates of the parameters become known in the course of the analysis, the distribution of the statis-

tics required for testing the hypothesis cannot be found in advance.

Thus, the distributions of the statistics of the tests to be used must be found in an interactive mode in the course of

the statistical analysis. Of course, this requires a developed program with parallel processing (as in our case) to speed up the

simulation and make use of the available computational resources. Under these conditions, the time to construct (with

the required accuracy) the distributions GN(Sn⏐H0) of the test statistics needed for testing the hypothesis and to determine

the attained level of significance P{Sn ≥ S*}, where S* is the value of the statistic calculated from the sample, is not very large

against the background of a complete solution to the statistical analysis problem.

The following example demonstrates the accuracy with which the available level of significance can be determined

as a function of the sample volume N of the empirical distribution of the statistic modelled in an interactive model.

Example. We now test the composite hypothesis that the following sample of size n = 100 is described by an inverse

gaussian distribution with the density of Eq. (6):

0.945 1.040 0.239 0.382 0.398 0.946 1.248 1.437 0.286 0.987

2.009 0.319 0.498 0.694 0.340 1.289 0.316 1.839 0.432 0.705

0.371 0.668 0.421 1.267 0.466 0.311 0.466 0.967 1.031 0.477

0.322 1.656 1.745 0.786 0.253 1.260 0.145 3.032 0.329 0.645

Parameters to be 

estimated

Percentage points
Model

0.1 0.05 0.01

Kuiper test

θ0 1.540 1.662 1.908 B3(5.5932; 7.6149; 2.1484; 2.3961; 0.5630)

θ1 1.512 1.631 1.872 B3(6.7423; 8.0549; 2.4935; 2.4976; 0.5250)

θ2 1.540 1.662 1.908 B3(5.5932; 7.6149; 2.1484; 2.3961; 0.5630)

θ0, θ1 1.402 1.505 1.709 B3(7.4917; 8.0016; 2.4595; 2.1431; 0.4937)

θ0, θ2 1.540 1.662 1.908 B3(5.5932; 7.6149; 2.1484; 2.3961; 0.5630)

θ1, θ2 1.402 1.505 1.709 B3(7.4917; 8.0016; 2.4595; 2.1431; 0.4937)

θ0, θ1, θ2 1.402 1.505 1.709 B3(7.4917; 8.0016; 2.4595; 2.1431; 0.4937)

Watson test

θ0 0.127 0.157 0.228 B3(3.6769; 4.4438; 9.8994; 0.6805; 0.0082)

θ1 0.124 0.153 0.223 B3(3.4122; 4.9262; 9.6902; 0.7643; 0.0087)

θ2 0.127 0.157 0.228 B3(3.6769; 4.4438; 9.8994; 0.6805; 0.0082)

θ0, θ1 0.096 0.116 0.164 B3(3.5230; 4.4077; 9.2281; 0.4785; 0.0104)

θ0, θ2 0.127 0.157 0.228 B3(3.6769; 4.4438; 9.8994; 0.6805; 0.0082)

θ1, θ2 0.096 0.116 0.164 B3(3.5230; 4.4077; 9.2281; 0.4785; 0.0104)

θ0, θ1, θ2 0.096 0.116 0.164 B3(3.5230; 4.4077; 9.2281; 0.4785; 0.0104)
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TABLE 5. Upper Percentage Points and Models for the Limiting Distributions of the Statistics of Nonparametric Tests of

Goodness-of-Fit for Testing of Hypotheses with Respect to Sl-Johnson Distributions with Use of Maximum Likelihood Estimates



Parameters to be

estimated

Percentage points
Model

0.1 0.05 0.01

Kuiper test

θ0 1.540 1.662 1.908 B3(5.5932; 7.6149; 2.1484; 2.3961; 0.5630)

θ1 1.512 1.631 1.872 B3(6.7676; 8.3605; 2.3501; 2.4976; 0.5142)

θ2 1.491 1.612 1.857 B3(7.5884; 8.1397; 2.6781; 2.4982; 0.4882)

θ3 1.517 1.638 1.885 B3(8.1449; 7.2651; 3.0338; 2.4418; 0.4880)

θ0, θ1 1.402 1.505 1.709 B3(8.1449; 7.2650; 3.0338; 2.1431; 0.5015)

θ0, θ2 1.393 1.496 1.703 B3(7.5234; 7.3134; 2.7694; 2.1076; 0.5035)

θ0, θ3 1.390 1.496 1.713 B3(8.0187; 7.7542; 2.7862; 2.1751; 0.4800)

θ1, θ2 1.414 1.525 1.749 B3(8.6702; 7.5387; 2.9284; 2.2036; 0.4600)

θ1, θ3 1.375 1.475 1.675 B3(8.6702; 7.5387; 2.9284; 2.0887; 0.4740)

θ2, θ3 1.350 1.447 1.640 B3(9.0132; 7.9999; 2.8585; 2.0644; 0.4635)

θ0, θ1, θ2 1.324 1.422 1.621 B3(10.7806; 8.4043; 3.2432; 2.1461; 0.4150)

θ0, θ1, θ3 1.333 1.431 1.629 B3(10.3455; 8.0495; 3.5687; 2.1993; 0.4463)

θ0, θ2, θ3 1.296 1.388 1.575 B3(10.3223; 7.7893; 3.3393; 2.0021; 0.4358)

θ1, θ2, θ3 1.299 1.394 1.584 B3(10.5957; 8.2600; 3.2334; 2.0676; 0.4194)

θ0, θ1, θ2, θ3 1.235 1.321 1.494 B3(9.9689; 7.3418; 3.4037; 1.8225; 0.4438)

Watson test

θ0 0.127 0.157 0.228 B3(3.6769; 4.4438; 9.8994; 0.6805; 0.0082)

θ1 0.124 0.153 0.223 B3(3.4122; 4.9262; 9.6902; 0.7643; 0.0087)

θ2 0.117 0.146 0.215 B3(6.0296; 3.7175; 22.6978; 0.7115; 0.0057)

θ3 0.121 0.150 0.220 B3(7.4154; 3.9208; 22.4649; 0.6800; 0.0022)

θ0, θ1 0.096 0.116 0.164 B3 (3.5230; 4.4077; 9.2281; 0.4785; 0.0104)

θ0, θ2 0.093 0.114 0.161 B3 (4.0651; 4.8643; 9.5614; 0.4903; 0.0078)

θ0, θ3 0.092 0.113 0.162 B3 (4.4170; 4.9456; 10.4292; 0.5005; 0.0067)

θ1, θ2 0.099 0.123 0.181 B3 (5.5181; 4.1815; 16.0852; 0.5478; 0.0055)

θ1, θ3 0.089 0.108 0.151 B3 (5.7461; 4.4051; 13.9768; 0.4528; 0.0060)

θ2, θ3 0.084 0.101 0.141 B3 (5.9952; 4.3409; 13.8757; 0.4020; 0.0060)

θ0, θ1, θ2 0.077 0.093 0.131 B3 (5.5809; 4.9570; 14.1052; 0.4540; 0.0060)

θ0, θ1, θ3 0.080 0.097 0.137 B3 (5.8959; 4.4478; 14.5923; 0.4132; 0.0060)

θ0, θ2, θ3 0.072 0.087 0.121 B3 (6.1780; 4.6712; 14.5568; 0.3791; 0.0060)

θ1, θ2, θ3 0.072 0.087 0.121 B3 (6.1780; 4.6712; 14.5568; 0.3791; 0.0060)

θ0, θ1, θ2, θ3 0.062 0.074 0.101 B3 (7.3816; 4.4215; 14.1896; 0.2616; 0.0053)
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TABLE 6. Upper Percentage Points and Models for the Limiting Distributions of the Statistics of Nonparametric Tests of

Goodness-of-Fit for Testing of Hypotheses with Respect to Su-Johnson Distributions with Use of Maximum Likelihood Estimates



0.374 0.236 2.081 1.198 0.692 0.599 0.811 0.274 1.311 0.534

1.048 1.411 1.052 1.051 4.682 0.111 1.201 0.375 0.373 3.694

0.426 0.675 3.150 0.424 1.422 3.058 1.579 0.436 1.167 0.445

0.463 0.759 1.598 2.270 0.884 0.448 0.858 0.310 0.431 0.919

0.796 0.415 0.143 0.805 0.827 0.161 8.028 0.149 2.396 2.514

1.027 0.775 0.240 2.745 0.885 0.672 0.810 0.144 0.125 1.621

The shape parameters θ0 and θ1 and the scale parameter θ2 are estimated from the sample, while the shift parame-

ter θ3 = 0 is assumed known. The maximum likelihood estimates of the parameters found for this sample are q0 = 0.7481,

q1 = 0.7806, q2 = 1.3202. The calculated values of the statistics are Vn
mod = 1.1113 for Kuiper and Un

2 = 0.05200 for Watson.

The distributions of the test statistics in this case depend on θ0 and θ1 [20, 22] but not on θ2, and must be found for θ0 = 0.7481,

θ0 = 0.7806.

The attained levels of significance for the tests P{Vn
mod ≥ 1.1113} and P{Un

2 ≥ 0.05200} were obtained for differ-

ent accuracies of modelling of the distributions of the statistics (for different sizes N of the modelled samples of statistics)

and are listed in Table 7.

Thus, the models of distributions of statistics and tables of percentage points given here make it possible to apply

the Kuiper and Watson tests correctly when testing composite hypotheses regarding a series of parametric models for distri-

butions. The interactive method employed here offers the possibility of correctly using the tests when the distribution of the

test statistics corresponding to correctness of the test hypothesis H0 is not known prior to the time it is used.

This work was supported by the Ministry of Education and Science of the Russian Federation as part of the gov-

ernment task (Project 8.1274.2011) and the Federal Targeted Program on Scientific and Teaching Staff for an Innovative

Russia (Agreement No. 14.V37.21.0860).
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