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Abstract – A wide selection of tests for exponentiality is 
considered. Distributions of test statistics under true null 
hypothesis are studied and power of tests is estimated by 
means of methods of statistical simulation. A comparative 
analysis of power of tests with respect to competing alterna-
tives with different shapes of hazard rate function is 
conducted. The conclusions are made on preference of one 
test or another under presence of specific competing 
alternatives. 
 
Index terms – test, exponential distribution, power of test. 

I. INTRODUCTION 

NUMBER OF AUTHORS propose different 
statistical tests for testing a hypothesis of 
exponentiality. The wide variety of tests is caused 

by frequent application of the exponential model in 
applications. This is not least defined by that such a 
simple model makes it possible to solve problems basing 
upon analytical methods only. 

Having a number of tests states a complicated problem 
of choice for practitioners as information available in 
publications does not definitely allow giving preference to 
some specific test. This is especially important when a 
problem arises of testing a hypothesis under presence of 
specific competing hypotheses. Of course, a set of 
goodness-of-fit tests could be applied but it appears from 
experience [1, 2] that the most powerful tests lie among 
the ones purposefully designed to test a hypothesis that 
sample follows one specific distribution. 

A rather wide selection of tests for exponentiality is 
considered in some papers, e.g. [3, 4], and their power 
with respect to important competing hypotheses was 
studied by means of methods of statistical simulation. The 
results obtained made it possible to single out promising 
tests to apply in cases of having competing hypotheses 
with specific shape of hazard rate function and against 
wide class of competing hypotheses. 

In this paper, some of the tests are excluded from con-
sideration as they show unsatisfactory properties in 
important cases. Following [3], we excluded the tests of 
Epstein, Hartley, Deshpande (0.9J ), and Wong and Wong. 

Among the tests considered in [4] – ,m nH  entropy 

estimator-based test that shows low power and the tests of 

Henze and Meintanis with statistics ( )1
,n aT  and ( )2

,n aT  that 

show unexpectedly low power in several cases either. 

We conducted a comparative analysis of tests from the 
promising group. In addition, we considered Bolshev’s 
test for exponentiality proposed for testing hypothesis of 
exponentiality of observations in several small samples. 

II.  PROBLEM DEFINITION 

Let ( )Exp θ  be exponential distribution with the density 

( ) ( )expf x x θ θ= − , 0x ≥ , 1 0θ λ −≡ > , and 1,..., nX X  be 

given independent observations of nonnegative random 
variate. The composite hypothesis under test is 0H : X  

follows ( )Exp θ  under some value of θ . 

In test statistics, we will use scaled observations 
ˆ

j j nY X θ=  or their transformed values ( )1 expj jZ Y= − − , 

1 j n≤ ≤ , where 1

1
ˆ n

n n jj
X n Xθ −

=
= = ∑  is the maximum 

likelihood estimator of parameter θ . 
Let us denote order statistics of jX , jY , and jZ  as 

( ) ,jX  ( )jY , and ( )jZ  respectively. Denote 

( ) ( ) ( )( )11j j jD n j X X −= − + − , 1 j n≤ ≤ , ( )0 0X ≡ . 

III.  THEORY 

A. Gnedenko’s F-test 

Gnedenko’s F-test [3, 5, 6] is designed to test 
exponentiality against competing hypothesis 1H : distribu-

tion has monotone hazard rate. The test statistic is: 

( )
1 1

R n

R j j
j j R

Q D R D n R
= = +

= −∑ ∑ . 

Under true null hypothesis, RQ  has an F distribution with 

2R and 2(n-R) degrees of freedom. 0H  is rejected for both 

small and large values of RQ , concluding a decreasing 

hazard rate in the first case and an increasing – in the 
second. Our simulation with calculation of estimators of 
power of Gnedenko’s test have shown that one should set 
R=[0.3n] out of R=[0.1n], [0.2n], ..., [0.9n] to maximize 
power when testing against hypotheses with monotone 
hazard rate. 

A 
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B. Harris’ modification of Gnedenko’s F-test 

This test was proposed by Harris [7] and discussed in 
[3] and [5]. The test statistic 

( )
1 1

1

2

2

R n

j j
j j n R

R n R

j
j R

D D R

Q
D n R

= = − +

−

= +

 
+ 

 ′ =
−

∑ ∑

∑
 

follows F-distribution with 4R and 2(n-2R) degrees of 
freedom under true null hypothesis. The hypothesis is 
rejected for both small and large values of RQ′ . 

We obtained that this test has sufficiently high power 
with respect to competing hypotheses with convex hazard 
rate and low power with respect to distributions with 
monotone hazard rate. The simulation conducted have 
shown that the test reaches its highest power with 
R=[0.1n]. 

C. Hollander and Proschan’s test 

The test of Hollander and Proschan [8, 3] is applied to 
one-sided alternatives with property “new better than 
used” (“new worse than used”). This property “may be 
interpreted as stating that the chance ( )F x  that a new unit 

will survive to age x is greater (less) than the chance 
( ) ( )F x y F y+  than an unfailed unit of age y will survive 

an additional time x. That is, a new unit has stochastically 
greater life than a used unit of any age” [8]. The test 
statistic is: 

( ) ( ) ( )( ) ( ) 1, ,
, , ,

0, .i j k
i j k

a b
T X X X a b

a b
ψ ψ

> >

>
= + =  ≤
∑  

The test is two-sided, authors give tables of approxi-
mate lower and upper critical values and the following 
normal approximation: 

[ ]( ) [ ]( ) 1 2*
0 0E | D |T T T H T H

−
= − , 

where ( ) ( )( )0E | 1 2 8T H n n n= − −  and 

[ ] ( )( )0D | 1.5 1 2T H n n n= − − ×

( )( ) ( )2 3 4 2592 7 3 432 1 48n n n× − − + − +   . 

D. Gini’s test 

This two-sided test with statistic 

( )
, 1

2 1
n

n j k
j k

G Y Y n n
=

= − −∑  

is considered in [9, 3, 4]. 
The asymptotic distribution of 

( ) { }1 2* 12 1 1 2n nG n G= − −    

is standard normal [9] which, as we found, well describes 
*
nG  under 10n ≥ . Gini’s test is equivalent to the score test 

[4] with statistic ( )
1

1
2 2

n

n jj
S n n jY−

=
= − ∑ , which is 

connected to nG  with expression ( ) 1
1 1n nn S G

−− = − . We 

considered the test based on nG  expressing the latter via 

nS  as it has lower computational complexity. 

E. Tests based on empirical distribution function 

E.1. Kolmogorov’s test 
In Kolmogorov’s goodness-of-fit test, the value 

( ) ( )
1

max max ,max .n j ji j n i j n

j j
D Z Z

n n≤ ≤ ≤ ≤

 −    = − −        
 

is used as a measure of difference between empirical 
distribution and the exponential law. 

To decrease the dependence of the Kolmogorov’s 
statistic on sample volume one should use the statistic 
with Bolshev’s correction [10]: 

( )6 1 6n nK n D n= ⋅ + . 

 
Fig. 1. Densities of distributions of statistics K, CMS, and AD under true 
null hypothesis. 

E.2. Cramer–von Mises–Smirnov’s test 
The test statistic of Cramer–von Mises–Smirnov’ test 

is: 

( )

2

1

1 2 1

12 2

n

n jj

j
CMS Z

n n=

− = + − 
 

∑ . 

E.3. Anderson–Darling’s test 
The statistic of Anderson–Darling’s goodness-of-fit test 

for testing a sample for exponentiality is: 

( )
1

2 1 2 1
2 ln 1 ln 1

2 2

n

n j j
j

j j
AD n Z Z

n n=

 − − = − − + + −  
  

∑ . 

The hypothesis of exponentiality is rejected by either 
Kolmogorov’s, Cramer–von Mises–Smirnov’s, or 
Anderson–Darling’s test for large values of statistic. 

A good model [11] for distribution of nK  under true 

complex null hypothesis and 25n ≥  is gamma distribution 
(5.1092;0.0861;0.2950)γ  with density 

( ) ( ) ( ) ( )0 2 1

0

1

2 2

1 0

1
,xf x x e x

θ θ θ
θ θ θ

θ θ
− − −= − >

Γ
, 
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for nCMS  – Johnson’s SB Distribution 

(3.3738;0.2145;1.0792;0.011)Sb  with density 

( )
( )( )

[ ]

1 2

3 2 3

2

3
0 1 3 3 2

2 3

2

1
exp ln , , ,

2

f x
x x

x
x

x

θ θ
π θ θ θ

θθ θ θ θ θ
θ θ

= ×
− + −

  − × − + ∈ +  + −   
 

for nAD  – (3.8386;1.3429;7.500;0.090)Sb (see Fig.1). 

F. Tests based on a characterization via the mean 
residual life function 

X  is distributed exponentially under the assumption 
0 µ< < ∞  if, and only if ( )|E X t X t µ− > =  for each 

0t > . This is equivalent to ( ) ( )min ,E X t F tµ  =   for each 

0t >  and, basing upon this, Baringhaus and Henze [12, 4] 
proposed Kolmogov and Cramer–von Mises–Smirnov 
type statistics. 

The Kolmogorov type statistic of Baringhaus-Henze is: 

( ) { }

( )
0 1 1

1 1
sup min ,

max , ,

n n

n j j
t j j

n n

K n Y t Y t
n n

n K K

≥ = =

+ −

= − ≤ =

=

∑ ∑1
 

where 

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

1
1 10,1,..., 1

1
10,1,..., 1

max ... 1 ,

max ... 1 .

n j jj n

n j jj n

K n Y Y Y j n j n

K j n n Y Y Y j n

+ −
+= −

− −

= −

 = + + + − −
 

 = − + + − −
 

 

Here, it is as well reasonable to use the statistic with the 
Bolshev’s correction: 

( )* 6 1 6n nK n K n n= ⋅ + . 

The Cramer–von Mises–Smirnov statistic of 
Baringhaus-Henze is: 

( ) { }
( ) ( )

( ) ( )

2

*

1 10

min ,1

, 1

max ,

1 1
min , 1

2 3 2min ,

2 .

j k

j kj k

n n
t

n j j
j j

n
Y Y

j k
j k

Y YY Y

CMS n Y t Y t e
n n

n e Y Y

e e e

∞
−

= =

−−

=

−− −

 
= − ≤ = 

 

= − − ×

× + + 

∑ ∑∫

∑  

The results of our simulation show that distributions of 
these two statistics do not match those given in [12], 
though one should not be surprised by this fact because 
the hypothesis under discussion is composite and involves 
calculation of MLE of scale parameter [13] (see also 
section IV). 

G. Deshpande’s test 

The test was proposed in [14] and discussed in [3] for 
testing exponentiality against competing distributions 
with increasing hazard rate. The test statistic is calculated 
by 

( ) ( )1
1 ,b b j kJ n n h X X

−= − ∑ , 

where 
1, ,

0, ,
j k

b

X bX
h

otherwise

>= 


 

and the sum is taken for all 1 ,j k n≤ ≤ , j k≠ . When 
nothing is known about competing distribution a priori, 
one should use two-sided critical values. 

Deshpande showed that ( )( )1 2
bn J M F−  has asymptoti-

cally normal distribution with 0µ =  and 2
14σ ζ= , where 

( ) ( ) 1
1M F b

−= +  and 

( )
( )1 22

2 11 1 2 4
1 .

4 2 2 1 1 1 1

bb b

b b b b b b
ζ

 − = + + + − − + + + + + + 

. 

H. Cox and Oakes test 

The hypothesis under test is rejected for both small and 
large values of test statistic 

( )1
1 log

n

n j jj
CO n Y Y

=
= + −∑ . 

The normalized statistic 16nCO n π −⋅  has limit stand-

ard normal distribution. 
The test with statistic nCO  is consistent against compet-

ing distributions with finite mathematical expectation and 
[ ]log log 1E X X X− ≠ , provided the latter expectation 

exists. 

I. Klar’s test 

The Klar’s test [15, 4] is based upon the integrated 
distribution function and rejects the hypothesis of 
exponentiality  for large values of statistic 

( )
( )( )

( )( )
( )

( )

( ) ( )( ) ( )( )

, 2

3
2

1 1

2 3 2

2 1

exp 1 2
2 exp

1

2
2 exp .

n a

n n
j

j
j j

k j j
i j

a n
KL

a a

a Y
a aY

na

a Y Y aY
n

= =

<

+
= −

+ +

− +
− − − +

+

 + − − −
 

∑ ∑

∑

 

The author proposes [15] the use of a combined test that 
is based upon several statistics ,n aKL  with different values 

of a  and rejects the hypothesis if at least one of ,n aKL  

tests rejects it. Relying on simulation results, author 
concludes that the test 1,10

nKL  (combined of ,1nKL  and 
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,10nKL ) has the highest power with respect to alternatives 

of different types. 

J. Bolshev’s test 

This test is designed for testing the hypothesis that a set 
of small samples follow exponential distributions [16]. 

Let ( )1,..., 2; 1,
ii in iX X n i N≥ =  be independent random 

variates. The hypothesis to test is 0H : ijX  follow expo-

nential distributions with densities ( )expi ia a x−  

( )0, 1, ; 1,ix j n i N> = = ; the values of ia  are unknown 

and, possibly, different. If 0H  is true, the statistics 
1

1 1

r r

ir ij ijj j
X Xζ +

= =
=∑ ∑ ( )1, 1ir n= −  are independent 

and follow beta distributions with parameters r  and 1 

[16]. Consequently, statistics rirζ  ( )1, 1; 1,ir n i N= − =  

are independent and identically uniformly distributed on 
[0,1]. One should apply non-parametric goodness-of-fit 
tests to test them for uniformity. In this paper, we used 
Anderson–Darling’s test [17]. Total volume of small 
samples has a determinative effect on power of the 
Bolshev’s test, thus we consider single samples without 
loss of generality. 

K. Tests based upon empirical Laplace transform 

In these tests, the Laplace transform 

( ) ( ) ( )expt E tX tψ λ λ= − = +    of exponential 

distribution is estimated by its empirical counterpart 

( ) ( )
1

1
exp

n

n j
j

t tY
n

ψ
=

= −∑ . 

K.1. The test of Baringhaus and Henze 
In the test of Baringhaus and Henze [18, 4], the fact is 

used that ψ  satisfies differential equation 

( ) ( ) ( ) 0t t tλ ψ ψ′+ + = , t R∈ . The test rejects the 

hypothesis for large values of statistic 

( )( )
( )

( ) ( )

1
, 2

, 1

2 3

1 1
.

2 2
.

n
j k j k

n a
j k j k j k

j k j k

j k j k

Y Y Y Y
BH n

Y Y a Y Y a

Y Y Y Y

Y Y a Y Y a

−

=

 − − +
= − +
 + + + +


+ +
+ + + + 

∑
 

The choice of a  is proposed to be made according to a 
supposed competing hypothesis. 

K.2. The test of Henze 
The test of Henze [19, 4] rejects the hypothesis of 

exponentiality for large values of statistic 

( )

( ) ( ) ( ) ( )( )

11
,

, 1

1 1
1

exp 1 exp ,

n

n a j k
j k

n

j j
j

HE n Y Y a

Y a E Y a n a a E a

−−

=

=

= + + −

− + + + −

∑

∑
 

where ( ) ( )1
1 exp

z
E z t t dt

∞ −= −∫  is exponential integral 

and 0a >  is constant 

K.3. The L-test of Henze and Meintanis 
In the L-test of Henze and Meintanis [20, 4], the hy-

pothesis is rejected for large values of statistic ,n aL . 

Description of ,n aL  distribution and tables of percent 

points for several a  are given in [20]. 

( )
( ) ( )

2

, 3 2
, 1 1

1 1 11
2 .

n n
j k j

n a
j k j

j k j

Y Y a Y a n
L

n aY Y a Y a= =

+ + + + + +
= − +

+ + +
∑ ∑  

L. Tests based upon empirical characteristic function 

L.1. W-tests of Henze and Meintanis 
In the W-tests of Henze and Meintanis [21, 4], the null 

hypothesis is rejected for large values of statistics: 

( )

( ) ( )

( )
( )( )

( )
( )( )

( )
( )( )

1
, 2 22 2

, 1

2 22 2

2 3 32 2 22 2 2

1 1

2

4 2 6 2 6
,

n

n a
j k

j k j k

j k j k j k

j k j k j k

a
W

n a Y Y a Y Y

Y Y a Y Y a Y Y

a Y Y a Y Y a Y Y

=


= −
 + − + +


+ − − − + 

− + + 
+ + + − + +


∑

 

( ) ( ) ( )

( ) ( )

22

2
, 2

, 1

2 2

2

2
1 exp

4 44

2
1 exp .

4 4

n
j kj k

n a
j k

j k j kj k

Y Ya Y Y
W

a an a

a Y Y Y YY Y

a a a

π
=

    −− −
   = + − +
   
   

   − + ++    + − − −
   

   

∑
 

L.2. Test for exponentiality of Epps and Pulley 
As n → ∞  the statistic of the test of Epps and Pulley [4] 

( ) ( )1 2

1

1
48 exp 1 2

2

n

n jj
EP n Y

=

 = − −  
∑  

is described by standard normal distribution; the null 
hypothesis is rejected for large values of .nEP  The test is 

consistent against competing distributions with monotone 
hazard rate, absolutely continuous CDF F(x), ( )0 0F = , 

and 0 µ< < ∞ . 

IV.  EXPERIMENTAL RESULTS 

Some of the authors give normalizing transformations 
for test statistics, what makes it possible to apply standard 
normal law to normalized statistic to compute p-values 
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while testing the hypothesis. In practice, such asymptoti-
cal results may turn to be unacceptable for samples of 
finite volume as a consequence of significant difference 
between distribution of specific statistic and its asymptot-
ical model. 

We used the methodology of statistical simulation [22] 
to verify how close actual distributions of statistics fit to 
corresponding theoretical models. The normalizing 
transformations were applied to statistics T , G , bJ , and 

CO  when computing empirical distributions of test 
statistics under true null hypothesis. The results are based 
on 16’600 simulations, the true distribution was exponen-
tial with 1θ = : ( ) ( )1 expF x x= − − . The samples obtained 

were tested for fit with corresponding limit distributions 
by classical Kolmogorov’s test. The p-values obtained in 
testing the simple hypothesis are given in Table I. 

The results are following. 
Application of limit distributions in the tests QR, Q’R, G, 

K, CMS, AD, B is correct and makes it possible to 
accurately estimate the p-value. 

Tests *K  and *CMS  are not delivered from the influ-
ence of sample volume on distribution of statistic. For 

20n ≥ , Johnson’s SB distribution 
Sb(2.1275;1.6849;2.5437;0.26888) can serve as model for 

*K  and Sb(2.756;0.98223;1.8645;0.01602) – for *CMS . 
When 10n =  the use of these models leads to an underes-
timated p-value by *K  test and an overestimated p-value 
by *CMS . 

The normal approximation of distribution of statistic 
HP  can be used only with limitations. Under 300n ≤ , 
computation of percent point tables would be the best 
choice. The use of asymptotical model is reasonable 
under 400n ≥ . 

In the test with statistic 0.5J , application of normal 

approximation do not lead to significant errors under 
50n ≥ ; in tests with statistics EP  and CO  – under 
100n ≥ . 

V. DISCUSSION OF RESULTS 

We compared the power of tests for relatively small 
sample volumes 20n =  and 50n = . Empirical distribu-
tions of test statistics under either true null hypothesis or 
competing hypotheses were found by 1’660’000 simula-
tions. Null (exponential) distribution is characterized by 
constant hazard rate, thus we considered competing 
distributions that belong to three classes: with increasing, 
decreasing, and non-monotone hazard rates: 
− Weibull ( )W θ  with ( )1( ) expf x x xθ θθ −= − ; 

− gamma ( )θΓ  – ( ) ( )1 1( ) expf x x xθθ − −= Γ − ; 

− beta ( )0 1,θ θΒ  – ( ) ( ) 10
1 11

0 1( ) , 1f x x x
θθθ θ − −−= Β − ; 

− uniform U(0,1) on [ ]0,1 ; 

− lognormal ( )LN θ  – 

( ) ( )( )1 2 2( ) 2 exp ln 2f x x xθ π θ
−

= − ; 

− half-normal HN – ( ) ( )1 2 2( ) 2 exp 2f x xπ= − . 

Distributions with increasing hazard rates are ( )W θ  

and ( )θΓ  ( )1θ > , ( )0,1U , HN , ( )1,2Β , ( )2,1Β ; decreas-

ing – ( )W θ  and ( )θΓ  ( )1θ < ; non-monotone – LN , 

( )0.5,1B . 

When computing critical values of statistics and estima-
tors of power we assumed no prior knowledge of type of 
competing hypothesis. Therefore, we used two-sided 
critical regions in those tests that have a choice between 
left-sided and right-sided critical regions. 

The estimators of power of tests with respect to differ-
ent competing distributions with increasing, decreasing, 
and non-monotone hazard rates are given in Tables II, III, 
and IV respectively. 

The tests with statistics BH  and HE  behave alike (this 
fact was mentioned in [4]), therefore below we will 
mention only the test with statistic BH . The choice of 

0.5a =  (and, correspondingly, 0.5BH ) provides higher 

power compared to other values of a . In the L-test, 
statistic 1L  would be a reasonable choice in general case, 

in W-tests – statistic ( )1
1W , in KL-test – 1,10KL , obviously. 

The following drawbacks should be mentioned in case 
of competing hypotheses with increasing failure rate (see 
Table II). Under 20n = , the test of Bolshev is biased with 
respect to ( )1.2W , ( )1.5Γ , HN, and ( )1,2Β  (i.e., its power 

is less than probability of type I error 0.05α = ); the test 

0.1L  is biased with respect to the same distributions and 

( )1.4W ; the test ( )2
2.5W  is biased with respect to ( )1.2W . 

The test 0.1Q′  shows remarkably low power with respect 

to competing distributions with decreasing failure rate 
(see Table III). 

In case of competing laws with non-monotone failure 

rate, the tests ( )2
2.5W  and 5BH  are biased with respect to 

( )0.5,1Β ; the test 0.1L  – with respect to ( )1LN  and 

( )0.8LN . 

VI.  CONCLUSION 

Obviously, among the all tests studied, we cannot 
unambiguously choose a test with the highest power with 
respect to every considered competing hypothesis. It is as 
well unrealistic to place the tests in some unconditional 
order, e.g., descending by power. 



11TH INTERNATIONAL CONFERENCE ♦ APEIE − 2012 

In the same time, it is possible to select groups of tests 
equally promising in case of suggestion of certain kind of 
alternative. 

Thus with respect to competing distributions with both 
increasing and decreasing failure rates, the tests of Cox 
and Oakes (CO), Anderson and Darling (AD), Henze and 

Meintanis ( 1L  and ( )1
1W ), Baringhaus-Henze ( 0.5BH ), and 

Henze ( 0.5HE ) show stably high power. 

The tests of Harris (0.1Q′ ) and Anderson and Darling 

(AD) possess high power with respect to alternatives with 
non-monotone hazard rates. 

It is undesirable to use the tests of Harris ( )0.1Q′ , 

Bolshev ( )B , Henze and Meintanis (0.1L  and ( )2
2.5W ), 

Baringhaus and Henze ( )0.5BH , and Henze ( )0.5HE  under 

condition of small sample size or without specifying a 
concrete alternative (as a result of possible bias). 

In a problem of choice of the most powerful test against 
given specified alternative beyond the ones considered in 
this paper, one should conduct a power research by 
similar methodology (and try different values of “fine-
tuning” parameters in tests that have such). Of course, in 
such a research, knowledge of hazard rate function of the 
alternative should be taken into account. 

The Bolshev’s test (B) possess sufficiently high power 
with respect to laws with decreasing hazard rates but is 
inferior to the other tests in cases of other alternatives. 
One should keep in mind that the main advantage of the 
test is the approach that makes it possible to test the 
hypothesis of exponentiality of a set of small samples. 
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TABLE I 
P-VALUES IN TESTING GOODNESS-OF-FIT OF TEST STATISTIC DISTRIBUTIONS WITH CORRESPONDING THEORETICAL MODELS 

 

n [ ]0.3nQ  [ ]0.1nQ′  HP G K *K  CMS *CMS  AD J0.5 EP CO B 

10 0.04 0.60 0.00 0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 
20 0.27 0.23 0.00 0.58 0.06 0.00 0.13 0.00 0.03 0.00 0.00 0.00 0.31 
50 0.74 0.91 0.00 0.95 0.92 0.05 0.25 0.00 0.14 0.00 0.00 0.00 0.52 
100 0.40 0.11 0.00 0.41 0.94 0.04 0.39 0.00 0.33 0.00 0.00 0.00 0.04 
200 1.00 0.05 0.00 0.95 0.43 0.16 0.80 0.00 0.16 0.00 0.00 0.00 0.17 
300 0.19 0.16 0.00 0.82 0.81 0.06 0.93 0.00 0.80 0.00 0.00 0.00 0.97 
400 0.94 0.29 0.00 0.40 0.86 0.09 0.17 0.00 0.13 0.00 0.00 0.00 0.78 
500 0.54 0.84 0.00 0.80 0.21 0.30 0.94 0.00 0.18 0.01 0.00 0.00 0.53 

TABLE II 
POWER OF TESTS FOR EXPONENTIALITY WITH RESPECT TO COMPETING HYPOTHESES WITH INCREASING FAILURE RATE 1000×  (n=20, α=0.05). 

 

 

W(1.2) Г(1.5) HN B(1,2) W(1.4) Г(2) W(1.5) U(0.1) Г(4) B(2,1) 

CO  138 217 191 220 381 551 527 528 996 999 

0.5J  123 186 177 200 322 466 448 545 984 998 

EP  133 194 216 270 366 490 511 672 989 1000 

G  130 187 216 277 356 473 498 714 987 1000 

0.3Q  107 148 163 180 265 358 367 445 926 985 

0.1Q′  54 78 60 73 93 176 126 120 692 607 

HP  124 184 191 234 333 465 466 669 985 1000 

K  119 169 178 204 290 407 398 528 961 994 
*K  152 204 244 303 358 462 480 729 975 1000 

CMS  135 197 210 252 350 483 482 673 988 1000 
*CMS  134 191 221 279 358 477 496 716 988 1000 

AD  109 168 170 209 307 451 438 628 987 1000 

B  39 43 45 49 58 77 77 126 457 823 

1KL  127 179 219 288 347 450 485 731 982 1000 

10KL  101 175 110 107 270 464 377 244 986 958 
1,10KL  102 160 159 203 294 439 423 619 986 1000 

0.1L  10 12 20 21 27 61 50 48 661 673 

0.75L  135 217 177 192 367 552 507 473 996 998 

1L  140 220 192 214 380 554 523 526 996 999 
( )1

1W  132 194 189 221 328 465 450 661 982 1000 
( )1

2.5W  123 161 229 327 320 389 447 809 954 1000 
( )2

1W  118 150 228 342 303 356 424 829 923 1000 
( )2

2.5W  46 59 99 174 134 160 206 696 710 1000 

0.5BH  134 213 184 206 368 542 510 523 996 999 

1BH  140 213 205 240 381 537 526 597 995 1000 

1.5BH  138 206 211 253 378 520 523 631 993 1000 

2.5BH  131 192 210 263 363 489 507 662 989 1000 

5BH  115 166 196 257 327 435 466 679 979 1000 

0.5HE  139 219 192 214 379 552 522 529 996 999 

1HE  142 215 209 244 385 538 531 601 995 1000 

1.5HE  139 207 213 257 380 520 525 634 993 1000 

2.5HE  131 192 211 264 363 489 507 664 989 1000 

5HE  116 167 197 259 329 437 468 680 979 1000 
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TABLE III 
POWER OF TESTS FOR EXPONENTIALITY WITH RESPECT TO COMPETING 

HYPOTHESES WITH DECREASING FAILURE RATE 1000×  (n=20, α=0.05). 
 

 

Г(0.7) W(0.8) Г(0.5) Г(0.4) 

CO  281 277 730 913 

0.5J  196 184 564 786 

EP  200 236 543 759 

G  203 239 547 759 

0.3Q  206 193 567 787 

0.1Q′  85 84 131 165 

HP  226 216 601 811 

K  156 173 470 706 
*K  112 134 380 617 

CMS  178 199 525 756 
*CMS  185 218 523 748 

AD  273 269 706 898 

B  175 172 511 759 

1KL  184 223 505 723 

10KL  279 262 700 888 
1,10KL  272 279 686 879 

0.1L  363 309 785 933 

0.75L  254 259 670 869 

1L  240 252 645 851 
( )1

1W  155 162 464 693 
( )1

2.5W  155 191 429 638 
( )2

1W  148 184 404 606 
( )2

2.5W  182 235 428 611 

0.5BH  251 259 664 866 

1BH  225 248 614 827 

1.5BH  213 242 583 800 

2.5BH  202 238 548 765 

5BH  193 236 509 720 

0.5HE  243 255 650 855 

1HE  220 245 602 816 

1.5HE  210 240 575 791 

2.5HE  200 237 543 759 

5HE  192 235 508 719 

 

TABLE IV 
POWER OF TESTS FOR EXPONENTIALITY WITH RESPECT TO COMPETING 

HYPOTHESES WITH NON-MONOTONE FAILURE RATE 1000×  (n=20, 
α=0.05). 

 

 

LN(1) B(0.5,1) LN(0.8) LN(1.5) LN(0.6) 

CO  106 261 348 595 890 

0.5J  73 144 356 247 900 

EP  132 66 259 663 801 

G  117 60 246 659 801 

0.3Q  41 254 197 421 707 

0.1Q′  215 460 312 326 657 

HP  61 137 307 314 863 

K  138 154 304 572 851 
*K  122 117 287 549 841 

CMS  152 188 341 616 891 
*CMS  151 112 279 652 841 

AD  139 397 334 625 893 

B  73 208 65 398 234 

1KL  150 71 231 662 759 

10KL  103 329 464 527 963 
1,10KL  149 290 347 652 914 

0.1L  5 530 42 389 430 

0.75L  104 214 399 602 939 

1L  109 171 375 619 923 
( )1

1W  105 226 350 513 888 
( )1

2.5W  133 100 173 631 640 
( )2

1W  128 94 147 618 549 
( )2

2.5W  193 41 91 680 291 

0.5BH  117 221 379 623 929 

1BH  125 137 334 646 892 

1.5BH  132 100 303 656 859 

2.5BH  142 69 266 666 809 

5BH  158 46 224 674 735 

0.5HE  110 175 372 623 921 

1HE  121 113 326 646 883 

1.5HE  129 87 298 656 851 

2.5HE  140 64 263 665 805 

5HE  156 45 224 673 735 

 


