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Abstract — A wide selection of tests for exponentiality is We conducted a comparative analysis of tests fitwan t
considered. Distributions of test statistics undertrue null promising group. In addition, we considered Bolshev
hypothesis are studied and power of tests is estite@l by test for exponentiality proposed for testing hysik of

means of methods of statistical simulation. A compative gy 5nentiality of observations in several small gkzs
analysis of power of tests with respect to competinalterna-

tives with different shapes of hazard rate functionis

conducted. The conclusions are made on preferencé ane Il. PROBLEM DEFINITION

test or another under presence of specific competn

alternatives. Let Exp(#) be exponential distribution with the density
Index terms — test, exponential distribution, power of test. f(x)=exp(-x6)/6, x=0, §=4">0, and X,,...X, be

given independent observations of nonnegative mando
. INTRODUCTION variate. The composite hypothesis under tesHjs X

_ follows Exp(#) under some value of .
NUMBER OF AUTHORS propose different In test stafisti il led ob i
statistical tests for testing a hypothesis of n tes. stanstics, we will use scaled observalions

exponentiality. The wide variety of tests is caused; = X, /6 or their transformed valueg, =1-exp(-Y,),
by f_req_uent applic_ation of the exponential model irhsjsn, where 8 = X =Y X, is the maximum
applications. This is not least defined by thathsiec = ° ] noo =
simple model makes it possible to solve problensinga likelihood estimator of paramete.
upon analytical methods only. Let us denote order statistics of,, Y,, and Z; as
Having a number of tests states a complicated probl x Y » and Z respectively. Denote
of choice for practitioners as information avaikkh
publications does not definitely allow giving preface to  D; =(n- i+1)(X(,-) - X(,»_l))- 1I<jsn, X, =0.
some specific test. This is especially importantemwta
problem arises of testing a hypothesis under poesef
specific competing hypotheses. Of course, a set of lll. THEORY
goodness-of-fit tests could be applied but it appé@m
experience [1, 2] that the most powerful testsalirong A. Gnedenko’s F-test

the ones purposefully designed to test a hypothbsis , . .
sample follows one specific distribution. Gnedenko's F-test [3, 5, 6] is designed to test

A rather wide selection of tests for exponentiality exponentiality against competing hypothesis distribu-
considered in some papers, e.g. [3, 4], and theivep tion has monotone hazard rate. The test statsstic i
with respect to important competing hypotheses was e < _
studied by means of methods of statistical simohatlhe Qe = JZ Di/R Z Di/( n 3 '
results obtained made it possible to single outsing

; . . Under true null hypothesisQ, has arF distribution with
tests to apply in cases of having competing hymsabe L
with specific shape of hazard rate function andirega 2R and 2(-R) degrees of freedont, is rejected for both

wide class of competing hypotheses. small and large values of,, concluding a decreasing
In this paper, some of the tests are excluded tom  hazard rate in the first case and an increasing thé
sideration as they show unsatisfactory properties kecond. Our simulation with calculation of estimatof
important cases. Following [3], we excluded thesteX power of Gnedenko’s test have shown that one shsetid
Epstein, Hartley, Deshpandg,(,), and Wong and Wong. R=[0.3n] out of R=[0.1n], [0.2n], ..., [0.91] to maximize

Among the tests considered in [4] H,, entropy power when testing against hypotheses with monotone
estimator-based test that shows low power andetts bf hazard rate.
Henze and Meintanis with statistic§”) and T? that

,a

show unexpectedly low power in several cases either

(i)’

j=R+1
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B. Harris’ modification of Gnedenko’s F-test [4] with statistic s, =2n-21Y" iy, which is
n j=1 i)?

This test was propos_ed. by Harris [7] and discussed . nnected toc. with expression(n—l)'lg —1-G. We
[3] and [5]. The test statistic "

R N considered the test based Gp expressing the latter via
[Z D, + > D J/ZR S, as it has lower computational complexity.
; Uil j=n-R+1
QR - niR .. . . . -
z D, /(n—2R) E. Tests based on empirical distribution function

J7RH E.1. Kolmogorov's test

follows F-distribution with R and 2(-2R) degrees of |, Kolmogorov’s goodness-of-fit test, the value
freedom under true null hypothesis. The hypothésis

rejected for both small and large valuesQt D, = max{ vma{l_z(j)} !ma%z(j) _1_1}}
We obtained that this test has sufficiently higiwpo =sLn _'S'S” n .

with respect to competing hypotheses with convesatsh 'S u_sed_ as a measure of qm‘erence between emipirica

rate and low power with respect to distributionghwi distribution and the exponential law.

monotone hazard rate. The simulation conducted havel© decrease the dependence of the Kolmogorov's

shown that the test reaches its highest power wiffatistic on sample volume one should use thesgti

R=[0.1n]. with Bolshev’s correction [10]:

K, =(6nD,+1)/6/n.

C. Hollander and Proschan’s test )

The test of Hollander and Proschan [8, 3] is appl@ ;w I
one-sided alternatives with property “new betteanth K CMS: Johnson's SB (3.3738;1.2145;
used” (“new worse than used”). This property “mayy b .» R S— 1.0792;0.0110)
interpreted as stating that the charfofx) that a new unit " {‘ \
will survive to agex is greater (less) than the chance " | AD: SB(3.8366,1.3429;7.5,0.09)
F(x+y)/F(y) than an unfailed unit of agewill survive I / K: (5.1092; 0.0861; 0.295)
an additional time. That is, a new unit has stochastically | /
greater life than a used unit of any age” [8]. Tthet . |
statistic is: | e e S

1 a > b . 0,00 B 0.21 - U..IZ . 063 . 0.83 1.04 128
T= Xy, Xy + , ah={" ' Fig. 1. Densities of distributions of statistKsCMS andAD under true
i;k[/j( o X0 X(k)) 4(al {O.aS b. null hypothesis.

The test is two-sided, authors give tables of adpro g 2 cramer—von Mises—Smirnov's test
mate lower and upper critical values and the foil@v  The test statistic of Cramer—von Mises—Smirnovt tes

normal approximation: is:
. 12 .
T =(T-E[TIR])(O[TIH]) Mg =L+ n(4_ _21—1}2
where E(TIH,)=n(n-1)(n-2)/¢€ and 12n <=2
D[T | Ho] = 1_5n( n- ])( n—- g)x E.3. Anderson-Darling’s test
The statistic of Anderson—Darling’s goodness-ofdit
x[2(n-3)(n-4)/2592+ {n- }/ 432 /1 4F. for testing a sample for exponentiality is:
&2t 2 -1\, (.
D. Gini's test AD,=-n 2;{2”'” Z +(1+?j In(1 Zl)}
This two-sided test with statistic The hypothesis of exponentiality is rejected byheit
n Kolmogorov's, Cramer—-von Mises—Smirnov’'s, or
G, = Z |Y, - \§|/2 ) Anderson—Darling’s test for large values of statist
jk=1

A good model [11] for distribution of<, under true
The asymptotic distribution of complex null hypothesis a_nnlz 25 ig gamma distribution
i 72 ¥(5.1092;0.0861; 0.295( with density
G, =[12(n-3]7{G,-13 1
is standard normal [9] which, as we found, wellali®s f (X) =W
G, undern=10. Gini’s test is equivalent to the score test oA

is considered in [9, 3, 4].

(x-6)" "%, x>0,
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for CMS, — Johnson's SB  Distribution G. Deshpande’s test
Sh(3.3738;0.2145;1.0792;0.01 with density The test was proposed in [14] and discussed irfdi3]
f ( ) 60, testing exponentiality against competing distribng
X) = X s . L
\/ZT(X—Hg)(HZ +6,- x) \k/)v)l/th increasing hazard rate. The test statisticalsulated
_ 2 — o\
xexp —E[HO +6, Inx—%j ,x0[6, 6,+6,] J=n(n-1)" > '1( X, X<)*
2 6, +6;-x 1, X, >bX,
whereh, = b
0, otherwise

for AD, — SK(3.8386;1.3429;7.500;0.09(see Fig.1). and the sum is taken for alls jk<n, j#k. When

nothing is known about competing distribution aopiri
F. Tests based on a characterization via the Mealhe should use two-sided critical values.

residual life function Deshpande showed that*(J, - M(F)) has asymptoti-

X is distributed exponentially under the assumptlonaIIy normal distribution withy = 0 and o” = 4¢,, where
O<pu<ow if, and only if E(X-t|X>t)=x for each
t>0. This is equivalent t&E[ min(X,t) | = F(t) for each

t>0 and, basing upon this, Baringhaus and Henze [12, 4 Z, _{ L. b1 +2(1‘b)_ > 4 .
proposed Kolmogov and Cramer-von Mises—Smirnov =~ 4| b+2 2b+1 b+1 B+b+1 (b+1)

type statistics.
The Kolmogorov type statistaf Baringhaus-Henze is: H. Cox and Oakes test

M (F)=(b+1)" and

K, fsu% mlr(Y t) Zl{ Y < } = The hypothesis under test is rejected for both Isamal
20 | N n= large values of test statistic
:\/ﬁmax(Kn ), CO,=n+Y " (1-Y)log Y.
where The normalized statisti€Q,,/6/nGr* has limit stand-
K! = _max [n'l(Y(l) + .+ \(j))+ xﬂ)(l— in-1 rﬂ , ard normal distribution.
e The test with statisticQ, is consistent against compet-
Ky = _max | j/n-n (Y ) ) Y (+ i 'ﬂ ing distributions with finite mathematical expedat and

Here, it is as well reasonable to use the statigtic the E[Xlog X-log X]# 1, provided the latter expectation
Bolshev’s correction: exists.

K = (6ntK, /VA+ 1)/ 6/7.

The Cramer—von  Mises—Smirnov  statisticof I Klar's test
Baringhaus-Henze is: The Klar's test [15, 4] is based upon the integtate
©(1 distribution function and rejects the hypothesis of
CMS, = d[_z min( Y, ) Z]{ y< ] 8= exponentiality for large values of statistic
o= n= 2(3a+2)n
=n"y [2—39’“”“ ) me(\q :Y) " (2+a)(1+a)’

e exp( (1+a)Y )

X(e_YJ +e% )+2ema><(Y ‘&):| ZW Zexp( aY)

j=1
The results of our simulation show that distribotiaf 2
these two statistics do not match those given @j,[1 +F;|:a(Y(k) ‘\(;))‘2] exp(— a?(j))-

though one should not be surprised by this fachbse )
the hypothesis under discussion is composite armvias | he author proposes [15] the use of a combinedhast

calculation of MLE of scale parameter [13] (seeoals'S based upon several statistiks, , with different values
section 1V). of a and rejects the hypothesis if at least onekaf,

tests rejects it. Relying on simulation resultsthau
concludes that the teskL;" (combined of KL,, and
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KL has the highest power with respect to alternative n -
wa) gneste P HE,, =i Y (Y+ Y+ § -

of different types. ' fr=r
J. Bolshev’s test —ZGXP(Y,- +a) 5(Y+ 5)* - eexd 3 H H
This test is designed for testing the hypothesas shset = o ) o

of small samples follow exponential distributiods]. where El(z):_[zt exp(~1) dt is exponential integral

Let Xiy,.... X, (n > 2; i:m) be independent random and a >0 is constant
variates. The hypothesis to testhg: X; follow expo- K.3. The L-test of Henze and Meintanis

In the L-test of Henze and Meintanis [20, 4], the hy-
o e pothesis is rejected for large values of statistic,.
(X> 0, j=1n;i= LN); the values ofa are unknown  pegeription of L,. distribution and tables of percent
and, possibly, different. |fHO is true, the statistics points for severah are given in [20]

_ r r+1 I I — . 2
G =2 0u% /Zj=lxi (r =1n, _1) are independent L 1 Zn: 1+(Yj +Y a+1) N 1+Y,+a n
and follow beta distributions with parameters and 1 " ong (Y +Y + 3)3 jzl(Y’* éz a
[ _ ' j K

[16]. Consequently, statisticg; (r =1n -1 i=1N ) J
are independent and identically uniformly distrémiton L. Tests based upon empirical characteristic function
[0,1]. One should apply non-parametric goodnesttof-
tests to test them for uniformity. In this papee wsed
Anderson-Darling’s test [17]. Total volume of smallh

samples has a determinative effect on power of the
Bolshev’s test, thus we consider single samplesowit wi =& n { 1 B 1

loss of generality. Moon 4 a2 +(Yj _ \()2 2 +( y+ y)z

a(vry) L 2&-dy-Y)  2&-d v Y

o] (a (o) (& ¥

nential  distributions  with  densities a exp(-3x)

L.1. W-tests of Henze and Meintanis
In the W-tests of Henze and Meintanis [21, 4], the null
pothesis is rejected for large values of stasisti

K. Tests based upon empirical Laplace transform

In these tests, the Laplace transform  ~
@ (t) = E[exp(-tX)] = A /(t+A) of  exponential (
distribution is estimated by its empirical countatp

Ly NS A R\
n t)=— exp(-tY. ). W(2 = :|_+7J ex A N L. S
.00= 25 enl-1) il zﬂ s .
K.1. The test of Baringhaus and Henze _ 2 2
In the test of Baringhaus and Henze [18, 4], tlu & + 2a (Yj : \() Vit -1|ex —7(\“ X) .
used that ¢  satisfies differential  equation 4a a 4a

()l +t)4{/ (t)ﬂ'[/(t) =0, tOR. The test rejects the L.2. Test for exponentiality of Epps and Pulley

hypothesis for large values of statistic As n - « the statistic of the test of Epps and Pulley [4]
BHna:n‘lzn: (-%)0-Y) _ vi+x ~+. EP, =(48n)y2[12'_11exp(—\q)— 1%
. 2l YtY+a (Yj+\(+@ 2=

is described by standard normal distribution; thél n
AR . 2YY ] hypothesis is rejected for large values®®|. The test is

+ :
(+y+d  (y+y+ & consistent against competing distributions with otone

The choice ofa is proposed to be made according to #azard rate, absolutely continuous CB§), F(0)=0,
supposed competing hypothesis. and0< y<o .

K.2. The test of Henze
The test of Henze [19, 4] rejects the hypothesis of IV. EXPERIMENTAL RESULTS

exponentiality for large values of statistic
Some of the authors give normalizing transformation

for test statistics, what makes it possible to pgphndard
normal law to normalized statistic to compuygevalues
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while testing the hypothesis. In practice, suchngstpti-
cal results may turn to be unacceptable for sampfes

uniformU(0,1) on[0,1];

finite volume as a consequence of significant diffee ~ lognormalLN (6) -
between distribution of specific statistic andatymptot- _ 1 2 ]
ical model. f () —(HX\/ZIT) exp(—( Inx) /292)

We used the methodology of statistical simulati®® 2
to verify how close actual gd)?stributions of statistfit tc]>[ half-normalHN — f (x) = (2/”)1/ exP(‘Xz/? '
corresponding theoretical models. The normalizing Distributions with increasing hazard rates ang6)
transformations were applied to statistits G, J,, and andr(6) (6>1), U(0,1), HN, B(L2), B(2.); decreas-
CO when computing empirical distributions of test
statistics under trpue n?JII hypl)oothesis. The resafesbased "9 ~ w(g) and () (£<1); non-monotone —LN,
on 16'600 simulations, the true distribution wapexen- B(0.5,1).
tial with 6=1: F(x)=1-exp(-x). The samples obtained When computing critical values of statistics antines-

were tested for fit with corresponding limit diswtions tors of power we assumed no prior knowledge of type
by classical Kolmogorov's test. Thevalues obtained in competing hypothesis. Therefore, we used two-sided

testing the simple hypothesis are given in Table I. critical regions in those tests that have a chbiesveen
The results are following. left-sided and right-sided critical regions.
Application of limit distributions in the tes@g, Q'r, G, The estimators of power of tests with respect ftedi
K, CMS AD, B is correct and makes it possible to€nt competing distributions with increasing, desneg,
accurately estimate thevalue. and non-monotone hazard rates are given in Tahlds |

Tests k' and CMS are not delivered from the influ- @nd IV respectively. _ .
ence of sample volume on distribution of statisfior The tests with statisticBH and HE behave alike (this

N> 20 Johnson's SB distribution fact was mentioned in [4]), therefore below we will

SK(2.1275;1.6849;2.5437:0.26888) can serve as model nention only the test with statistisH . The choice of
k' and SH2.756;0.98223;1.8645,0.01602) — fams . 2=0-5 (and, correspondingly,BH,) provides higher
When n=10 the use of these models leads to an underg@Wer compared to other values af. In the L-test,
timatedp-value by K* test and an overestimatpevalue ~ Statistic L, would be a reasonable choice in general case,
by CMS . o S inW-tests — statistio” , in KL-test —KL**°, obviously.

The normal approximation of distribution of stast  The following drawbacks should be mentioned in case
HP can be used only with limitations. Under<300,  of competing hypotheses with increasing failure r@ee
computation of percent point tables would be thetbeTapie |1). Undern=20, the test of Bolshev is biased with

choice. The use of asymptotical model is reasonabllgspect tow(1.2), F(L.5), HN, andB(L2) (i.e., its power

under n = 400. . -
is less than probability of type | errer=0.05); the test

In the test with statisticJ,., application of normal o2 - AN
L ' - L,, is biased with respect to the same distributioms a
approximation do not lead to significant errors emd ™

n>50; in tests with statisticsEP and CO — under W(1.4); the testw/? is biased with respect ¥/(1.2) .
n2100. The testqQ,, shows remarkably low power with respect
to competing distributions with decreasing failuie
V. DISCUSSION OFRESULTS (see Table Il).

_ In case of competing laws with non-monotone failure
We compared the power of tests fo'r 'relatn'/ely SmalJate, the testaV? and BH, are biased with respect to

sample volumesn=20 and n=50. Empirical distribu- )

tions of test statistics under either true null diyesis or  B(0-53; the test L, — with respect toLN(1) and

competing hypotheses were found by 1'660’000 simuIaLN(o_g)_

tions. Null (exponential) distribution is charadted by

constant hazard rate, thus we considered competing

distributions that belong to three classes: wittreéasing, VI. CONCLUSION

decreasing, and nhon-monotone hazard rates:

~ Weibull w(6) with f(x):Hx“exp(—x‘g); Obviously, among the all tests studied, we cannot

unambiguously choose a test with the highest pavigr

~ gammar (8) — f(x) =T (6)™ ¥ exp(-X); respect to every considered competing hypothetsis.ads
o ot well unrealistic to place the tests in some unciortil
- betaB(6,.6) —f(x)=B(6,,6,) x**(1-x""; order, e.g., descending by power.
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In the same time, it is possible to select groupests
equally promising in case of suggestion of cerkam of
alternative.

Thus with respect to competing distributions withttb
increasing and decreasing failure rates, the w@stSox
and Oakes@O), Anderson and DarlingAD), Henze and

Meintanis (L, and W), Baringhaus-HenzegH, ), and

Henze (HEO-S) show S.tably hlgh power. ) characterization via the mean residual life funttioStatistical
The tests of Harris@,,) and Anderson and Darling Papers. 2000. No. 41. pp. 225-236.

(AD) possess high power with respect to alternativigis w [13] Lemeshko B.Y., Lemeshko S.B. Construction of stiatis
non-monotone hazard rates distribution models for nonparametric goodnessitaests in

. ; .- testing composite hypotheses: the computer appro&aimality
It is undesirable to use the tests of Har(QO.l) , Technology & Quantitative Management. 2011. VoIN8. 4. pp.
359-373.

[14] Deshpande V.J. A class of tests for exponentialifginst
increasing failure rate average alternatives /hiitika. 1983.
Vol. 70. No. 2. pp. 514-518.

[15] Klar B. Goodness-of-fit tests for the exponentiad ¢he normal
distribution based on the integrated distributionction // Ann.

40. No. 3. pp. 350-357.

[10] Bolshev L.N. Asymptotical Pearson's transformatiorheory of
Probability and its Applications. 1963. Vol. 8. Nb.pp. 129-155.
(in Russian).

[11] Lemeshko B.Y., Lemeshko S.B., Postovalov S.N.,@hinitova
E.V. Statistical data analysis, simulation and gtofprobability
regularities. Computer approach: monograph. NowskibNSTU
Publishing House, 2011. 888 pp. (in Russian).

[12] Baringhaus L., Henze N. Tests of fit for exponditjidased on a

Bolshev (B), Henze and MeintanisL{, and W.?),

Baringhaus and HenzgBH, ), and Henzeg HE,;) under

condition of small sample size or without specifyia
concrete alternative (as a result of possible bias)

In a problem of choice of the most powerful testingt Inst. Statist. Math. 2001. Vol. 53. No. 2. pp. 8.
given specified alternative beyond the ones cons@lén  [16] Bolshev L.N. On the Question of Testing for “Expotiality” //
this paper, one should conduct a power research by Theory of Probability and its Applications. 1966IV11. No. 3.
similar methodology (and try different values ofn¥- Pp- 48(:1':82' - i of caishov
tuning” parameters in tests that have such). Ofsun (171, BEVCe &, o o Bl N0, 7012,
such a research, knowledge of hazard rate functidhe No. 1(67). (in Russian).
alternative should be taken into accoynt. . [18] Baringhaus L., Henze N. A class of consistent tiests

The Bolshev's testR) possess sufficiently high power exponentiality based on the empirical Laplace fiams // Ann.
with respect to laws with decreasing hazard ratgsid Inst. Statist. Math. 1991. Vol. 43. No. 3. pp. F564.
inferior to the other tests in cases of other aHiBves. [19] Henze N. A new flexible class of omnibus testseiponentiality /
One should keep in mind that the main advantagief Commun. Statist. - Theory Meth. 1993. Vol. 22. Riopp. 115-
test is the approach that makes it possible to ttest

133.
; iali [20] Henze N., Meintanis S.G. Tests of fit for exponelityy based on
hypothesis of exponentiality of a set of small skesp the empirifcal Laplace transform // Statistics. 20@ol. 36. No. 2.
pp. 147-161.
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TABLE |
P-VALUES IN TESTING GOODNESSOFFIT OF TESTSTATISTIC DISTRIBUTIONS WITH CORRESPONDINGIHEORETICAL MODELS
n Qo,an] Q['o.m] HP G K K* CMS | CMS AD bs EP co B
10 0.04 0.60 0.00 0.43 0.00 0.0p 0.00 0.0p 0.p0 00/ 0.00 0.00 0.13
20 0.27 0.23 0.00 0.58 0.06 0.0p 0.18 0.0p 0.p3 00/ 0.00 0.00 0.31
50 0.74 0.91 0.00 0.95 0.92, 0.05 0.25 0.0p 0.l14 00/ 0.00 0.00 0.52
100 0.40 0.11 0.00 0.41 0.94 0.04 0.3 0.0p 0.83 000/ 0.00 0.00 0.04
200 1.00 0.05 0.00 0.95 0.43 0.16 0.8D 0.0p 016 000/ 0.00 0.00 0.17
300 0.19 0.16 0.00 0.82 0.81 0.0 0.98 0.0p 0.B0 000/ 0.00 0.00 0.97
400 0.94 0.29 0.00 0.40 0.86 0.0 0.1} 0.0 0.13 000/ 0.00 0.00 0.78
500 0.54 0.84 0.00 0.80 0.2] 0.3p 0.9k 0.0p 018 010/ 0.00 0.00 0.53
TABLE Il
POWER OF TESTS FOR EXPONENTIALITY WITH RESPECT TO COMAEG HYPOTHESES WITH INCREASING FAILURE RATEX1000 (n=20,a=0.05).
W(1.2) | I(1.5) HN B(1,2) | W(1.4) ) W(1.5) | U(0.1) I'(4) B(2,1)

co 138 217 191 220 381 551 527 528 996 999

Jos 123 186 177 200 322 466 448 545 984 998

EP 133 194 216 270 366 490 511 672 989 1000

G 130 187 216 277 356 473 498 714 98] 1000

Qs 107 148 163 180 265 358 367 445 924 985

Q, 54 78 60 73 93 176 126 120 692 607

HP 124 184 191 234 333 465 466 669 987 1000

K 119 169 178 204 290 407 398 528 961 994

K’ 152 204 244 303 358 462 480 729 975| 1000

CMS 135 197 210 252 350 483 482 673 98¢ 1000

cMS 134 191 221 279 358 477 496 716 988/ 1000

AD 109 168 170 209 307 451 438 628 98] 1000

B 39 43 45 49 58 77 77 126 457 823

KL, 127 179 219 288 347 450 485 731 982 1000

KL, 101 175 110 107 270 464 377 244 98 958

KL 102 160 159 203 294 439 423 619 983J 1000

Ly, 10 12 20 21 27 61 50 48 661 673

Loss 135 217 177 192 367 552 507 473 996 998

L 140 220 192 214 380 554 523 526 996 999

wo 132 194 189 221 328 465 450 661 987 1000

wf 123 161 229 327 320 389 447 809 954 1000

w? 118 150 228 342 303 356 424 829 923 1000

w2 46 59 99 174 134 160 206 696 710 1000

BH, 134 213 184 206 368 542 510 523 996 999

BH, 140 213 205 240 381 537 526 597 995 1000

BH, 138 206 211 253 378 520 523 631 993 1000

BH,, 131 192 210 263 363 489 507 662 98¢ 1000

BH, 115 166 196 257 327 435 466 679 97¢ 1000

HE, 139 219 192 214 379 552 522 529 996 999

HE, 142 215 209 244 385 538 531 601 995 1000

HE, , 139 207 213 257 380 520 525 634 993 1000

HE,, 131 192 211 264 363 489 507 664 98¢ 1000

HE, 116 167 197 259 329 437 468 680 97¢ 1000
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TABLE Il TABLE IV
POWER OF TESTS FOR EXPONENTIALITY WITH RESPECT TO COMANG POWER OF TESTS FOR EXPONENTIALITY WITH RESPECT TO COMAEG
HYPOTHESES WITH DECREASING FAILURE RATEX1000 (n=20,0=0.05). HYPOTHESES WITH NONMONOTONE FAILURE RATE x1000 (n=20,
0=0.05).
I0.7) | W(0.8) | I'(0.5) | I'(0.4)
co 281 277 730 913 LN(1) | B(0.5,1) | LN(0.8) | LN(1.5) | LN(0.6)
Jos 196 184 564 786 CcOo 106 261 348 595 890
EP 200 236 543 759 Jos 73 144 356 247 900
G 203 239 547 759 EP 132 66 259 663 801
Q. 206 193 567 787 G 117 60 246 | 659 801
Q. 85 84 131 165 Qs 41 254 197 421 707
HP 226 216 601 811 Qs 215 460 312 326 657
K 156 173 470 706 HP 61 137 307 314 863
K* 112 134 380 617 K 138 154 304 572 851
CMS 178 199 525 756 K" 122 117 287 549 841
cMS 185 218 523 748 CMS | 152 188 341 616 891
AD 273 269 706 898 cMS 151 112 279 652 841
B 175 172 511 759 AD 139 397 334 625 893
KL, 184 223 505 723 B 73 208 65 398 234
KLy, 279 262 | 700 888 KL, 150 71 231 | 662 759
K110 272 279 686 879 KL, 103 329 464 527 963
Lo, 363 309 785 933 Ko 149 290 347 652 914
Loss 254 259 670 869 Loy 5 530 42 389 430
L 240 252 645 851 Loss 104 214 399 602 939
W 155 162 264 693 L 109 | 171 375 619 | 923
Wz(l) 155 191 429 638 Wl(l) 105 226 350 513 888
.5
W 148 184 204 606 w 133 100 173 | 631 640
1
(2
Wz(? 182 235 428 611 W, 128 94 147 618 549
BH,. 251 259 664 866 w? | 193 41 91 | 680 | =291
BH, 225 248 614 827 BH,, | 117 221 379 623 929
BH, 213 242 583 800 BH, 125 137 334 646 892
BH,, 202 238 548 765 BH, 132 100 303 656 859
BH, 193 236 509 720 BH,, | 142 69 266 666 809
HE,, 243 255 650 855 BH, 158 46 224 674 735
HE, 220 245 602 816 HE,, | 110 175 372 623 921
HE,, 210 240 575 791 HE, 121 113 326 646 883
HE, 200 237 543 759 HE, ¢ 129 87 298 656 851
HE, 192 235 508 719 HE, 140 64 263 665 805
HE, 156 45 224 673 735




