Министерство образования и науки Российской Федерации

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Компьютерные технологии анализа данных и исследования статистических закономерностей: исследование мощности критериев проверки статистических гипотез

Исследование скорости сходимости распределений статистик критериев проверки статистических гипотез

Методические указания к выполнению курсовых проектов для студентов V-го курса ФПМИ по направлению 010400.68 дневного отделения

Методические указания предназначены для студентов, выполняющих курсовые проекты по курсу "Компьютерные технологии анализа данных и статистических закономерностей" В третьем исследования 010400.68 Прикладная математика (направление И информатика, магистерская программа – Математическое и программное обеспечение информационных технологий моделирования и анализа данных). Указания содержат необходимые сведения для выполнения курсового проекта, порядок выполнения, структуру оформления пояснительной записки и примерное содержание её разделов, варианты заданий.

Составители: доктор техн. наук, проф. *Б.Ю. Лемешко*, канд. техн. наук, доц. *С.Н. Постовалов*, канд. техн. наук, доц. *Е.В. Чимитова*

Работа подготовлена на кафедре прикладной математики

Цель. Изучение методики исследования скорости сходимости распределения статистики критерия к предельному с использованием компьютерных технологий.

Методические указания

1. Постановка задачи

Пусть имеется выборка (выборки) наблюдений одномерной или многомерной случайной величины ξ : $X_1, X_2, ..., X_n$. О виде или свойствах случайной величины имеется некоторое предположение – гипотеза H_0 .

Для проверки гипотезы H_0 сформулирован статистический критерий, который при заданной вероятности ошибки первого рода α определяет критическую область, при попадании в которую выборки гипотеза H_0 отвергается. Далее мы будем рассматривать только те критерии, у которых в явном виде задана одномерная статистика $S(X_1, X_2, ..., X_n)$, а критическая область представляет собой один или несколько интервалов значений статистики.

Пусть в случае верной гипотезы H_0 статистика критерия $S(X_1, X_2, ..., X_n)$ имеет функцию распределения $G_n(x)$, а при $n \to \infty$ - предельную функцию распределения G(x).

Основной задачей курсового проекта является определение скорости сходимости $G_n(x)$ к G(x), и определение объема выборки, при котором расстояние до предельного не превышает ε .

2. Определение скорости сходимости.

Пусть $\rho(G_n,G)$ - расстояние между двумя функциями $G_n(x)$ и G(x). Например, свойствами расстояния обладает статистика Колмогорова:

$$D_n = \sup_{|x| < \infty} \left| G_n(x) - G(x) \right|.$$

Функцию $\rho(G_n, G)$ мы будем аппроксимировать степенной функцией вида an^{-b} . Будем говорить, что чем больше величина b, тем больше скорость сходимости распределения статистики к предельному закону.

3. Алгоритм моделирования закона распределения $G_n(x)$

Аналитическое нахождение функции распределения $G_n(x)$, как правило, представляет собой более сложную задачу, чем нахождение предельного закона распределения. Однако достаточно просто можно построить эмпирическую функцию распределения для $G_n(x)$, используя метод Монте-Карло.

Для этого нужно сгенерировать выборку значений статистик критерия объемом N: $\{S_1, S_2, ..., S_N\}$ и построить по ней эмпирическую функцию распределения $G_{n,N}(x)$:

- 1. Моделируется выборка наблюдений случайно величины ξ объемом n.
- 2. Вычисляется статистика критерия S.
- 3. Шаги 1-2 повторяются N раз. В результате получается выборка статистик $\{S_1, S_2, ..., S_N\}$.

4. Определение требуемого объема моделирования

Естественно, что эмпирическое распределение $G_{n,N}(x)$ отличается от $G_n(x)$, но величину отклонения δ (рис. 1) можно определить, используя центральную предельную теорему, согласно которой $P\{|G_{n,N}(x)-G_n(x)|<\delta\} \to 2\Phi(\delta)-1=\gamma, N\to\infty$. Отсюда можно определить объем моделирования N, при котором длина γ -доверительного интервала будет равна 2δ :

$$N = t_{\gamma}^{2} \frac{G_{n}(x)(1 - G_{n}(x))}{\delta^{2}} \le \overline{N} = \frac{t_{\gamma}^{2}}{4\delta^{2}}, \ t_{\gamma} = \Phi^{-1}\left(\frac{\gamma + 1}{2}\right).$$

Так, если задать δ =0,001, $a \gamma$ =0,99, то \bar{N} = 1 658 944.

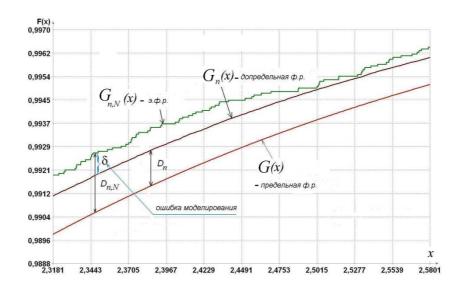


Рис. 1. Определение функции распределения $G_n(x)$

5. Аппроксимация расстояния до предельного закона степенной функцией В результате моделирования должна получиться таблица расстояний следующего вида (таблица 1).

Таблица 1. Зависимость расстояния от *n*

n	$D_{n,N}$
5	0,029

6	0,023
7	0,018
8	0,015
9	0,013
•••	•••

Следует заметить, что увеличение n, когда $D_{n,N} < 2\delta$, уже не имеет смысла, т.к. в этом случае $D_{n,N}$ будет показывать ошибку моделирования, а не расстояние до предельного закона распределения.

Далее по таблице 1 можно подобрать функцию степенной регрессии an^{-b} , например, используя MS Excel.

6. Определение объема выборки, начиная с которого расстояние до предельного закона распределения не превышает заданного ε .

Используя найденное уравнение степенной регрессии, можно решить уравнение $an^{-b} = \varepsilon$ и найти объем выборки п, начиная с которого расстояние до предельного закона распределения не превышает заданного ε .

Порядок выполнения работы

- 1. Согласно варианту задания разработать программу для моделирования выборки статистик критерия.
- 2. Смоделировать выборки статистик для разных значений *n*.
- 3. Вычислить расстояние $D_{n,N}$ для каждого значения n.
- 4. Аппроксимировать зависимость расстояния до предельного закона распределения функцией an^{-b} .
- 5. Определить объем выборки, начиная с которого расстояние до предельного закона распределения не превышает 0,01.

Варианты заданий

№	инты заданий Критерий	Источник	Закон распределения <i>ξ</i>	Дополнительные исследования	Уровень Сложности
Критери	ии согласия		,		
1	Колмогорова	[1]	Нормальное, Экспоненциальное, Коши	Статистика Колмогорова с поправкой Большева $\frac{6nD_n + 1}{6\sqrt{n}}$	12
2	Смирнова	[1]	Логистическое, Вейбулла, Коши		10
3	Крамера-Мизеса- Смирнова	[1]	Лапласа, Экспоненциальное, Коши		10
4	Андерсона-Дарлинга	[1]	Нормальное, Рэлея, Коши		10
5	χ^2 Пирсона (простая гипотеза)	[1]	Нормальное, Вейбулла, Коши	Число интервалов группирования 2, 3, 5, 7, 10 АОГ, РВГ	15
6	χ^2 Рао-Робсона- Никулина (сложная гипотеза)	[1]	Нормальное, Экспоненциальное	Число интервалов группирования 2, 3, 5, 7, 10 АОГ, РВГ	20
7	Колмогорова для цензурированных справа или слева выборок (простая гипотеза)	[2]	Экспоненциальное, Рэлея	Степени цензурирования 5, 10, 20, 30, 40, 50, 60, 70, 80 Цензурирование I типа, II типа, слева, справа	20
8	Модифицированный медианный критерий	[3], c. 225	Нормальное, Экспоненциальное, Коши		12
9	Модифицированный критерий Колмогорова- Смирнова	[3], c. 225	Логистическое, Вейбулла, Коши		12
10	Модифицированный вероятностный критерий	[3], c. 226	Нормальное, Рэлея, Коши		12
Критери	ии экспоненциальности				
11	Большева	[3], [4]	Экспоненциальное		12
12	Гнеденко	[5] c. 1812	Экспоненциальное		12
13 14	Харриса Холландера-	[5] c. 1813 [5] c. 1814	Экспоненциальное Экспоненциальное		12 12
15	Прошана Гини	[5] c. 1815	Экспоненциальное		12
16	Эпштейна	[5] c. 1815	Экспоненциальное		12
17	Кокса-Оукса	[6] c. 33	Экспоненциальное		12
18	Эппса-Палли	[6] c. 36	Экспоненциальное		12
19	Ватсона	[3], c.282, c.222	Экспоненциальное		12
20	Купера	[3], c.282, c. 223	Экспоненциальное		12
Критери	ии равномерности	, - -	1	1	
21	Шермана	[3], c.319	Равномерный		12
22	Морана	[3], c.320	Равномерный		12
23	Ченга-Спиринга).	[3], c.322	Равномерный		12

24	Саркади-Косика).	[3], c.323	Равномерный		12
25	Хегази-Грина	[3], c.326	Равномерный		12
26	Гринвуда- Кэсенберри-Миллера	[3], c.320	Равномерный		12
	и однородности средних	T =	Т		
27	t-критерий Стьюдента при известных дисперсиях	[1]	Нормальное, Экспоненциальное, Коши	рассмотреть разные комбинации объемов выборок	15
28	t-критерий Стьюдента при неизвестных, но равных дисперсиях	[1]	Нормальное, Экспоненциальное, Коши	рассмотреть разные комбинации объемов выборок	15
29	t-критерий Стьюдента при неизвестных и неравных дисперсиях	[1]	Нормальное, Экспоненциальное, Коши	рассмотреть разные комбинации объемов выборок отличие дисперсий в 2х выборках в 2 раза, в 5 раз, в 10 раз	20
30	Уилкоксона	[1]	Нормальное, Экспоненциальное, Коши	рассмотреть разные комбинации объемов выборок рассмотреть также случай, когда дисперсии не равны (отличие в 2 раза, в 5 раз, в 10 раз)	20
31	Манна-Уитни	[1]	Нормальное, Экспоненциальное, Коши	рассмотреть разные комбинации объемов выборок рассмотреть также случай, когда дисперсии не равны (отличие в 2 раза, в 5 раз, в 10 раз)	20
	и однородности распредел	ений			
32	Лемана-Розенблатта	[1]	Нормальное, Экспоненциальное, Коши	рассмотреть разные комбинации объемов выборок	15
33	Смирнова	[1]	Нормальное, Экспоненциальное, Коши	рассмотреть разные комбинации объемов выборок	
34	Катценбайссера- Хакля	[3] c. 228	Логистическое, Вейбулла, Коши	рассмотреть разные комбинации объемов выборок	15
	и однородности дисперсий	і (характери			
35	Левене	[1]	Нормальное, Лапласа, Вейбулла	выборочное среднее, выборочная медиана, усеченное среднее рассмотреть разные комбинации объемов выборок	15
36	Бартлетта	[1]	Нормальное, Макс. значений, Экспоненциальное	рассмотреть разные комбинации объемов выборок	15
37	Ансари-Бредли	[1]	Нормальное, Рэлея, Коши	рассмотреть разные комбинации объемов выборок	15
38	Муда	[1]	Нормальное, Максвелла, Коши	рассмотреть разные комбинации объемов выборок	15

39	Сижела-Тьюки	[1]	Лапласа, Экспоненциальное Коши,	рассмотреть разные комбинации объемов выборок	15
40	Кейпена	[1]	Логистическое, Экспоненциальное, Коши	рассмотреть разные комбинации объемов выборок	15
41	Клотца	[1]	Нормальное, Вейбулла, Коши	рассмотреть разные комбинации объемов выборок	15
Критер	ии выявления тренда				
42	Сериальный критерий Шведа- Эйзенхарта	[3], c.621			14
43	Критерий автокорреляции Кенуя	[3], c. 622			14
44	Критерий Блума- Кифера-Розенблатта	[3], c.623			14
45	Критерий Гёфдинга	[3], c.628			14

Литература

- 1. Статистический анализ данных, моделирование и исследование вероятностных закономерностей. Компьютерный подход: [монография] / Б. Ю. Лемешко [и др.]. Новосибирск, 2011. 887 с.: ил., табл.
- 2. Лемешко Б.Ю., Чимитова Е.В., Плешкова Т.А. Проверка простых и сложных гипотез о согласии по цензурированным выборкам // Научный вестник НГТУ. 2010. № 4(41). С.13-28. http://ami.nstu.ru/~headrd/seminar/publik_html/N_vestnik_2010.pdf
- 3. Кобзарь А.И. Прикладная математическая статистика для инженеров и научных работников. М.: Физматлит, 2006. 816 с.
- 4. Большев Л.Н. К вопросу о проверке «показательности». Вероятность и ее применения С. 542-544. (есть в электронном виде)
- 5. Ascher S. A survey of tests for exponentiality. Communications in Statistics Theory and Methods, 1811-1825 (есть в электронном виде)
- 6. Henze N. and Meintanis S.G. Recent and classical tests for exponentiality: a partial review with comparisons. Metrika (2005) 61: 29–45 (есть в электронном виде)