Лабораторная работа № 4

Моделирование реальных систем массового обслуживания

Цель работы

Научиться моделировать сложные системы массового обслуживания, встречающиеся на практике, средствами языка GPSS.

Указания к работе

Изучить такие сущности языка GPSS, как параметры транзактов, функции (function), таблицы (table и qtable), матрицы, логические переключатели, пользовательские списки (link, unlink), числовые группы и группы транзактов (join, remove, examine).

Задание

- I. Написать на языке GPSS программу, моделирующую описанную в варианте систему массового обслуживания.
- II. Протестировать правильность работы программы.
- III. С помощью реализованной модели ответить на поставленные в варианте вопросы о функционировании системы массового обслуживания и сделать вывод о том, как работает смоделированная система.

Требования к оформлению отчёта

Отчёт должен содержать:

- титульный лист (обязат.);
- описание варианта и задание на лабораторную работу (обязат.);
- программный код, написанный непосредственно студентами (обязат.);
- хотя бы 1 стандартный отчёт, генерируемый GPSS World;
- ответы на поставленные в задании вопросы и выводы о работе моделируемой системы (обязат.).

Рекомендуется для текста программы и стандартного отчёта использовать моноширинный шрифт, например, **Courier New, Consolas**.

Отчёт не должен содержать орфографических, пунктуационных и смысловых ошибок.

Все его разделы должны быть выдержаны в едином стиле оформления.

Критерии оценивания качества работы

- 1. Выполнение требований к оформлению отчёта:
 - 1 -отчёт удовлетворяет всем требованиям;
 - 0 отчёт не удовлетворяет всем требованиям, но содержит обязательные разделы;
 - *Л.р. не принимается* в отчёте нет хотя бы одного обязательного раздела.
- 2. Глубина понимания материала лабораторной работы каждым членом бригады:
 - 1 быстрые и правильные ответы на все вопросы;
 - 0 не на все вопросы ответы правильные и быстрые;

Варианты

В круглосуточный супермаркет с зависящими от времени суток интенсивностями, указанными в таблице 1, в соответствии с пуассоновским распределением приходят покупатели трёх типов: первого типа с вероятностью 0.4, второго -0.5, третьего -0.1. На входе в супермаркет покупатели первого типа берут корзину с вероятностью 0.2, второго типа – с вероятностью 0.6, третьего – 0.9. После этого покупатели расходятся по отделам. Всего в супермаркете 3 отдела. Одновременно в первом отделе может находиться 20 человек, во втором -40, в третьем -25. Покупатели первого типа заходят в первый отдел с вероятностью 0.15, во второй -0.8, в третий -0.55, покупатели второго типа: в первый -0.55, во второй -0.9, в третий -0.75, покупатели третьего типа: в первый -0.9, во второй -0.3, в третий -0.7, причём если в отделе уже находится максимально возможное число покупателей, то новый покупатель уходит к другому от-

Находясь в отделе, покупатель решает, будет ли он брать товары в данном отделе. Вероятности того, что находящийся в отделе клиент возьмёт товар, указаны в таблице 2. Если покупатель берёт товар, то сумма покупки распределена по нормальному закону с математическим ожиданием и дисперсией, указанными в таблице 3, при этом покупатель находится в отделе 15 ± 10 мин.

После того, как покупатель попытался войти в каждый отдел, он направляется к кассе с несколькими кассирами, к которым подходит одна очередь. Покупатель первого типа не встанет в очередь и покинет супермаркет без покупки, если длина очереди больше 50 человек, покупатель второго типа – если больше 25 человек, третьего типа – если больше 10 человек.

Кассир обслуживает покупателя за время, распределённое нормально с математическим ожиданием $20 + 15 \cdot \ln(1 + \text{стоимость}_{\text{покупки}})$ сек. и дисперсией 10 сек. Зарплата одного кассира 100 руб./час.

Смоделировать работу супермаркета в течение месяца. Определить оптимальное с точки зрения прибыли супермаркета число кассиров. Найти суммы всех покупок в каждом отделе. Сколько покупателей каждого типа ушло из супермаркета без покупок и сколько покупателей ушло без покупок из-за слишком длинной очереди.

m ~	1
Таблииа	- 1
тиолиии	1

1 аолица 1	
Время су-	Интенсив-
ток	ность,
TOK	приход/час
07^{00} – 09^{00}	55
$09^{00} - 12^{30}$	45
$12^{30} - 14^{00}$	100
$14^{00} - 17^{00}$	60
$17^{00} - 19^{00}$	200
$19^{00} - 22^{00}$	40
$22^{00} - 00^{00}$	25
$00^{00} - 07^{00}$	5

 $Ta6\pi ma 2$

1 иолица 2			
Отделы			
Тип	1	2	3
покуп.			
1	0.1	0.5	0.25
2	0.35	0.75	0.4
3	0.5	0.2	0.35

Таолица З					
Отделы					
Тип	1	2	3		
покуп.					
1	M=100	M=180	M=100		
1	D=20	D=50	D=30		
2	M=300	M=350	M=300		
2	D=50	D=150	D=150		
3	M=900	M=250	M=400		
3	D=200	D=50	D=200		
(= ===5====)					

(в рублях)

Система перекрёстков представлена на рисунке 1. В системе имеется 6 входов/выходов, по которым приезжают автомобили двух типов: обычные и привилегированные. Последние имеют право первоочередного проезда перекрёстков по отношению к обычным автомобилям. Вероятность того, что очередной прибывающий автомобиль является привилегированным, равна 0.05. На всех входах потоки приезжающих автомобилей описываются пуассоновским распределением со значением среднего интервала, приведённым в таблице 4. Вероятность того, что прибывший на і-й вход автомобиль покинет систему перекрёстков через і-й выход (например, прибывший на 1 вход автомобиль стремится выехать на 5 выходе), приводится в таблице 5.

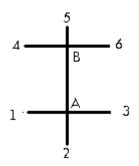


Рисунок 1 – Система перекрёстков

На каждом перекрёстке работает светофор, разрешающий в первом режиме движение тем, кто подъехал к перекрёстку сверху и снизу, а во втором режиме — слева и справа. В начальный момент времени на перекрёстке A светофор находится в первом режиме, на перекрёстке B — во втором режиме. Светофор меняет режим каждые 60 сек. Время, необходимое одной машине для проезда через перекрёсток, распределено нормально с математическим ожиданием 4 сек и дисперсией 0.5 с. Пока проезжающая перекрёсток машина не покинула его другая не может начать движение. Вероятности того, что следующая на j-й выход машина на κ -ом перекрёстке поедет вверх/вниз/влево/вправо, указаны в таблице 6. Время, которое потребуется на проезд "пролёта" A — B (от перекрёстка до перекрёстка) равно 35 с.

Смоделировать работу системы перекрёстков в течение 1 часа. Определить, перед каким перекрёстком и с какой стороны была самая длинная очередь. Сделать вывод о работе системы.

Таблииа 4

тиолици т					
$\mathcal{N}_{\underline{0}}$	Средний				
входа	интервал				
1	17 сек				
2	24 сек				
3	31 сек				
4	21 сек				
5	19 сек				
6	23 сек				

Таблица 5

Тиолици Э						
i	1	2	3	4	5	6
1	0	0.09	0.18	0.23	0.3	0.2
2	0.08	0	0.1	0.25	0.3	0.27
3	0.26	0.07	0	0.29	0.25	0.13
4	0.25	0.29	0.33	0	0.04	0.09
5	0.22	0.26	0.24	0.14	0	0.14
6	0.18	0.35	0.08	0.29	0.1	0

Таблица 6

	ерекрёст-	A	В
Выход	Ы		
	влево	0.8	0
1	вверх	0.2	0
1	вправо	0	0
	вни3	0	1
	влево	0	0
2	вверх	0.15	0
2	вправо	0	0
	вни3	0.85	1
	влево	0	0
3	вверх	0.21	0
3	вправо	0.79	0
	вни3	0	1
	влево	0	0.78
4	вверх	1	0
4	вправо	0	0
	вни3	0	0.22
	влево	0	0
5	вверх	1	0.65
3	вправо	0	0
	вни3	0	0.35
	влево	0	0
6	вверх	1	0
6	вправо	0	0.91
	вниз	0	0.09
оступаю	ших летап	ей 1 и	2 типа

3. В обрабатывающий цех поступают детали двух типов. Поток поступающих деталей 1 и 2 типа описывается пуассоновским распределением со значениями среднего интервала, указанными в таблице 7 (в зависимости от времени суток). Затем каждая деталь попадает к сортировщикам, которые сортируют их за время, распределённое по экспоненциальному закону со средним

временем обслуживания, непрерывно зависящим от времени суток и указанным для некоторых моментов времени в таблице 8.

Далее каждая деталь попадает к сборщикам, которые в течение 20 ± 5 мин обрабатывают деталь. Если у сборщика деталь 1 типа, то после обработки он должен отшлифовать её на станках 1 и 2 типа, причём неважно в каком порядке. Если у сборщика деталь 2 типа, то он должен отшлифовать её сначала на станке 2 типа и только потом на станке 3 типа. Только после завершения этого цикла действий сборщик может начать обработку следующей детали. Станки 2 типа шлифуют детали за время, распределённое по экспоненциальному закону со средним временем обслуживания 15 мин, станки 1 и 2 типа — за 20 ± 4 мин и 30 ± 2 мин соответственно.

Стоимость эксплуатации станков 1 типа в течение 8-часового рабочего дня 190 руб., 2 типа – 178 руб., 3 типа – 206 руб. Зарплата сортировщика – 5 руб./час, сборщика – 14 руб./час. Цена поступающей детали 1 типа 2 руб./шт., 2 типа 3 руб./шт. Цена готовой детали 1 типа – 7 руб./шт., 2 типа – 16 руб./шт. Цех работает с 9^{00} до 13^{00} и с 14^{00} до 18^{00} ежедневно, кроме субботы и воскресенья. Все детали, которые в момент начала перерыва на обед (13^{00}) обрабатывались, прерывают обработку, чтобы продолжить её после 18^{00} . Те детали, которые обрабатывались в 18^{00} , завершают обработку, ожидающие очереди к сортировщикам переносятся на следующий день, а прерванные в обед детали обрабатываются после 18^{00} . При этом сверхурочный труд рабочих оплачивается посекундно.

Смоделировать в течение 40 суток работу цеха. Определить, сколько надо иметь станков каждого типа и сколько сборщиков и сортировщиков содержать в штате, чтобы получать максимальную прибыль. Посчитать, сколько деталей каждого типа выпустил цех за 40 суток, сколько в среднем времени ушло на производство деталей, сколько деталей было так и не обработано.

Таблица 7

Период вре-	Время, мин		
мени	1 тип	2 тип	
$09^{00} - 10^{30}$	36	42	
$10^{30} - 12^{30}$	25	29	
$12^{00} - 14^{30}$	31	36	
$14^{30} - 17^{00}$	27	32	
$17^{00} - 18^{00}$	46	63	
18^{00} – 09^{00}	не поступают		

Таблица 8

Период времени	Время сортировки, мин
09^{00}	10
10^{30}	7
12^{00}	5
13 ⁰⁰	7
14^{00}	5
17 ⁰⁰	4
18 ⁰⁰	9

4. К горнолыжной трассе с интенсивностью 90 человек в час в соответствии с пуассоновским распределением подходят лыжники трёх типов: новички с вероятностью 0.2, опытные — 0.5, профессионалы — 0.3. В таблице 9 указаны зависимости вероятностей, с которыми лыжники уходят с трассы сразу после прихода, от числа уже катающихся лыжников. Трасса состоит из двух спусков — простого и сложного (см. рисунок 2). Трасса оборудована двумя типами подъёмников: с уровня А до В и с уровня В до С. Подъёмник каждого типа одновременно может поднимать до 15 человек, при этом время подъёма каждого лыжника с уровня А до В 3 мин, с В до С 10 мин.

Попадая в точки A и B, каждый лыжник решает, куда он поедет — вверх или вниз. Его выбор зависит от типа лыжника и от того, сколько спусков он уже проехал (например, путь C-B-A "содержит" 2 спуска). Вероятности принятия того или иного решения указаны в таблице 10. Время прохождения одного спуска распределено нормально с математическими ожиданиями и дисперсиями, указанными в таблице 11. Вероятности падения при спуске с горы указаны в таблице 12. При падении лыжник тратит на подъём 2 мин.

Рисунок 2 – Схема горнолыжной трассы

Расходы на эксплуатацию 1 подъёмника с уровня A до B - 3000 руб./час, c B до C - 5000 руб./час. Каждый лыжник за 1 спуск по простому участку платит 25 руб., по сложному - 35 руб.

Смоделировать работу трассы в течение 10 часов. Определить число подъёмников каждого типа, при котором владельцы трассы будут получать максимальную прибыль. Определить среднее время, в течение которого лыжник находится на спуске, и заполнить таблицу 13. Также определить средние денежные затраты лыжников на спусках.

Таблииа 9

1 аолица 9					
	Число людей на				
Тип	трассе				
лыжника	<100	101-	>300		
	<100	300	>300		
новичок	0.05	0.25	0.5		
опытный	0.07	0.2	0.35		
профи	0.1	0.3	0.45		

Таблииа 10

1 иолици 10								
Откуда	из В вверх		из В вниз			s A epx	из А	уйти
Число спусков	<11	>10	<11	>10	<11	>10	<11	>10
новичок	0.05	0.02	0.95	0.98	0.9	0.6	0.1	0.4
опытный	0.15	0.1	0.85	0.9	0.8	0.45	0.2	0.55
профи	0.75	0.5	0.25	0.5	0.7	0.4	0.3	0.6

Таблица 11

Тиолици 11					
	простой	сложный			
	спуск	спуск			
нови-	М=5 мин	М=25 мин			
чок	Д=1 мин	Д=3 мин			
опыт-	М=3 мин	М=11 мин			
ный	Д=0.6 мин	Д=1.2 мин			
профи	М=1.5 мин	М=6 мин			
профи	Д=0.2 мин	Д=1 мин			

Таблица 12

1 аолица 12		
	простой	сложный
	спуск	спуск
нови-	0.80	0.99
чок	0.00	0.77
опыт-	0.15	0.40
ный	0.13	0.40
профи	0.01	0.15
	•	•

Таблица 13

2 00 0000000000000000000000000000000000		
	прос-	слож-
	той	ный
	спуск	спуск
нови-		
чок		
опыт-		
ный		
профи		

5. Система городского метрополитена состоит из одной линии: от Студенческой до Красного проспекта. Время проезда между станциями распределено по нормальному закону с математическим ожиданием, заданным в таблице 14, и дисперсией 3 сек. Время стоянки поезда на станции распределено нормально с математическим ожиданием 15 сек и дисперсией 1 сек. В поезде 4 вагона. Вместимость 1 вагона — 100 человек. Пассажиры приходят на станцию в соответствии с пуассоновским распределением с интенсивностью, указанной в таблице 15. Каждый пассажир едет со станции А на станцию В. Вероятность того, что пассажир, севший на станции А в поезд, выйдет на станции В, указывается в таблице 16. Всего на линии работает 5 поездов. Считаем, что поток пассажиров всегда постоянный. Поезда в начале дня выходят один за другим через 5 минут.

Смоделировать работу метрополитена в течение дня. Определить, сколько времени в среднем в метро проводит пассажир, сколько времени он теряет при возможном ожидании поезда. Определить, в каком случае метрополитен получит больше прибыли: если каждый пассажир будет платить 8 руб./проезд независимо от того, сколько станций он проедет, или в случае, когда он будет платить 4 руб. за проезд каждого пролёта между станциями.

Таблица 14

Продёт можем отонущами	Мат. ожи-
Пролёт между станциями	дание, с
Студенческая – Речной Вокзал	240
Речной Вокзал – Октябрьская	110
Октябрьская – Площадь Ленина	150
Площадь Ленина – Красный проспект	90
разворот на конечных станциях	100

Таблица 15

Столица	Интенсивность,
Станция	приход/мин.
Студенческая	17
Речной Вокзал	22
Октябрьская	10
Площадь Ленина	18
Красный проспект	28

Таблица 16

	Студенческая	Речной	Октябрьская	Площадь	Красный
		вокзал		Ленина	проспект
Студенческая	0	0.35	0.14	0.11	0.4
Речной Вокзал	0.33	0	0.12	0.18	0.37
Октябрьская	0.25	0.28	0	0.16	0.31
Площадь Ленина	0.26	0.3	0.16	0	0.28
Красный проспект	0.29	0.35	0.19	0.17	0

6. На круглосуточно работающем заводе по производству телевизоров проводится контроль качества выпускаемых телевизоров и ремонт сломанных. В отдел контроля качества в соответствии с пуассоновским распределением с интенсивностью 7 штук/день поступают новые телевизоры. В отделе контроля работают *т* человек, каждый из которых за время, распределённое по экспоненциальному закону со значением среднего, указанным в таблице 17, осуществляет проверку работы телевизора. Вероятность того, что на очередной проверке выявятся ошибки, указана в таблице 18. Если была выявлена ошибка, то телевизор отправляется в отдел ремонта (ремонт за счёт завода), иначе телевизор поступает на продажу в магазин.

В отделе ремонта работает n человек, каждый из которых ремонтирует 1 телевизор за время, распределённое по экспоненциальному закону со значением среднего, указанного в таблице 19. После ремонта телевизор отправляется в отдел контроля качества.

В магазине телевизор продаётся в течение 20 ± 19 дней с момента поступления на прилавок. С момента продажи начинается эксплуатация телевизора. В процессе эксплуатации время безот-казной работы распределено экспоненциально со средним 10 месяцев. Гарантийный срок работы телевизора 9 месяцев. Если поломка произошла до истечения 9 месяцев, то телевизор отправляется в отдел с ремонта с нулевым количеством предыдущих ремонтов за счёт завода, иначе за счёт покупателя, причём телевизоры покупателей обладают приоритетом при ремонте и контроле по сравнению с новыми. После ремонта телевизор из отдела контроля передаётся пользователю.

Работники отдела контроля получают 20 руб./час, отдела ремонта -25 руб./час. Ремонт телевизора стоит 80 руб. Прибыль от продажи 1 телевизора -1000 руб. Проверка работы телевизора обходится в 50 руб.

Смоделировать работу завода в течение года и 2 лет. Выяснить, приносит ли прибыль отдел ремонта (взятый отдельно) в обоих случаях, сколько должно быть ремонтников и контролёров, чтобы завод получал максимальную прибыль. Выяснить, сколько в среднем работает купленный телевизор.

Таблица 17

1 aostatya 17	
Время	Время на про-
суток	верку, мин
$10^{00} - 12^{00}$	24
$12^{00} - 18^{00}$	20
$18^{00} - 22^{00}$	22
22^{00} – 03^{00}	28
$03^{00} - 10^{00}$	35

Таблииа 18

1 crostreteger	1 contrager 10	
№ про-	Вероятность	
верки	успешной проверки	
1	0.85	
2	0.90	
3	0.95	
4	0.97	
5,6,	0.99	

Таблица 19

,	
Время	Время на ре-
суток	монт, мин
$10^{00} - 12^{00}$	64
$12^{00} - 18^{00}$	60
$18^{00} - 22^{00}$	72
22^{00} – 03^{00}	95
$03^{00} - 10^{00}$	116

7. Покупатели подходят к отделу одежды магазина, работающего с 9^{00} до 17^{00} , в соответствии с пуассоновским распределением с интенсивностью, задаваемой формулой $y = \sin\left(\frac{t}{160}\right)$, где t – число минут, прошедшее с начала рабочего дня, а у – интенсивность прихода клиентов в минуту. Если в отделе уже находится больше 25 человек, то вновь приходящие покупатели уходят.

Зайдя в отдел, покупатель осматривает продаваемую одежду в течение времени, распределённого по нормальному закону с математическим ожиданием 15 мин и дисперсией 3 мин. После чего 60 % клиентов уходит без покупок, 5 % идут оформлять покупку, а 35 % — примеривать выбранный товар. Примерка одежды осуществляется в специальных кабинках, к которым подходит одна очередь. Примеряющие одежду становятся в очередь, если её длина не более n человек, где n — число кабинок, иначе — уходят без покупки. Время примерки распределено по нормальному закону с математическим ожиданием 10 мин и дисперсией 3 мин. После примерки 60 % уходит без покупки, а 40 % идут оформлять покупку.

К продавцам, оформляющим покупку, выстраивается одна общая очередь покупателей. Если покупатель, который не примерял одежду, стоит в очереди больше 5 мин, то он уходит, не совершив покупку. Если покупатель, примерявший одежду, стоит в очереди больше 15 мин, то он тоже уходит без покупки. Процесс покупки длится 2 ± 1 мин, после чего покупатель уходит из отдела.

Стоимость покупки распределена по нормальному закону с математическим ожиданием 1000 руб. и дисперсией 500 руб. Заработная плата 1 продавца — 300 руб./день. Число продавцов + количество кабинок для примерки одежды не должно быть больше 10.

Смоделировать работу отдела в течение 30 дней. Определить оптимальное для владельца магазина соотношение продавцов и кабинок. Определить, какой процент пришедших покупателей совершил покупку. Посчитать, сколько покупателей ушли без покупки из-за того, что очереди к кабинкам и к продавцам оказались слишком длинными. Сколько в среднем покупатели проводят времени в очередях?

Контрольные вопросы

- 1. Таблицы: предназначение, создание, добавление данных, доступ к свойствам с использованием СЧА.
- 2. Матрицы: предназначение, создание, добавление данных, доступ к свойствам с использованием СЧА.
- 3. Функции: предназначение, создание, типы, получение значения функции.
- 4. <u>Логические переключатели</u>: предназначение, создание, изменение состояния, доступ к свойствам с использованием СЧА.
- 5. <u>Пользовательские списки</u>: предназначение, создание, добавление элементов, доступ к свойствам с использованием СЧА.
- 6. <u>Числовые группы</u>: предназначение, создание, добавление элементов, доступ к свойствам с использованием СЧА.