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Preface

The Fifth International Workshop �Applied Methods of Statistical Analysis. Sta-
tistical Computation and Simulation� � AMSA'2019 is organized by Novosibirsk State
Technical University.

The �rst two Workshops AMSA'2011 and AMSA'2013, as well as AMSA'2019,
took place in Novosibirsk. AMSA'2015 was held in the resort Belokurikha located at
the foothills of Altai. AMSA'2017, organized together with Siberian State University
of Science and Technologies called after academician M.F. Reshetnev, took place in
Krasnoyarsk.

The First Workshop �Applied Methods of Statistical Analysis� AMSA'2011 was
focused on Simulations and Statistical Inference, AMSA'2013 � on Applications in
Survival Analysis, Reliability and Quality Control, AMSA'2015 � on Nonparametric
Approach and AMSA'2017 � on Nonparametric Methods in Cybernetics and System
Analysis.

The Workshop AMSA'2019 was mainly oriented to the discussion of problems
of Statistical Computation and Simulation, which are crucial for the development of
methods of applied mathematical statistics and their e�ective application in practice.

The Workshop proceedings would certainly be interesting and useful for special-
ists, who use statistical methods for data analysis in various applied problems arising
from engineering, biology, medicine, quality control, social sciences, economics and
business. The Proceedings of International Workshop �Applied Methods of Statistical
Analysis� are indexed in Scopus starting with 2017 materials.

The organization of the Fifth International Workshop �Applied Methods of Statis-
tical Analysis. Statistical Computation and Simulation� � AMSA'2019 was supported
by the Russian Ministry of Education and Science (project 1.1009.2017/4.6).

Prof. Boris Lemeshko
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Features of testing statistical hypotheses

under Big Data analysis

B. Yu. Lemeshko, S. B. Lemeshko and M. A. Semenova

Novosibirsk State Technical University, Novosibirsk, Russia
e-mail: lemeshko@ami.nstu.ru

Abstract

The methods of construction of estimates are considered in the analysis of
Big Data. The in�uence on the results of conclusions according to the Pearson
Chi-squared test of choosing the number of intervals and grouping method is
demonstrated. It is shows how the limited accuracy of data in large samples
e�ects on the distribution of statistics of non-parametric tests. Recommenda-
tions on the application of tests under large samples analysis are given. It is
shown that the distribution of statistics of tests for testing laws homogeneity,
as well as the tests of homogeneity of the means and tests of homogeneity of the
variances, is a�ected by the non-equilibrium character of the data presented in
the compared samples.

Keywords: Big Data; parameter estimation; testing hypotheses; goodness-
of-�t tests; homogeneity tests; statistical simulation

Introduction

The questions of application of statistical methods to the analysis of large data ar-
rays (Big Data) are of great interest in recent years. In connection with the rapid
accumulation of gigantic volumes of information, there is a need for research the ac-
cumulated data, for �nding, extracting and using the laws hidden in data, including
probabilistic ones. Naturally, one can try to apply methods and tests from the vast
arsenal of classical mathematical statistics for the analysis of big data, using popular
software systems for statistical analysis. However, application of the classical appara-
tus of applied mathematical statistics for the analysis of big data, as a rule, leads to
speci�c problems that limit the possibilities of correct application of this apparatus.

In this paper, we will discuss only the methods and tests associated with the
analysis of one-dimensional random variables, the real problems of which are most
familiar to us. At least three situations can be considered where increasing sample
size causes problems in application of methods or tests.

Firstly, due to the �curse of dimension�, well-proven methods and algorithms be-
come ine�ective. In particular, problems arise under the calculation of estimates of
parameters. When using estimation methods that operate on non-grouped data, the
computational costs increase cardinally with increasing size of samples analyzed. The
convergence of iterative algorithms used in estimation worsens. A signi�cant factor is
no robustness of certain types of estimation. The natural way to resolve this situation
is the use of estimation methods that involve grouping data [1]. But in this case, the
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question arises: how the estimates obtained for grouped data will a�ect the proper-
ties of hypotheses tests in which estimates will be used. For example, how will this
a�ect the statistics distributions of non-parametric goodness-of-�t tests when testing
composite hypotheses? In this case, the statistic distributions signi�cantly depend
on the method of parameter estimation [2, 3, 4, 5].

Secondly, a lot of popular statistical tests are not adapted even for samples of
about thousand observations, since the information on the distributions of statistics
of these tests is presented only by brief tables of critical values for some sample sizes
n. By rough estimate, the count of such tests is more than 80% of all tests count. It
should be noted that the possibility of application such tests with �reasonable� values
of sample size is easily resolved by statistical simulation of distributions of statistics
for given sample size and validity of the tested hypothesis H0. This simulation can be
carried out interactively during statistical analysis [6, 7]. The empirical distribution
GN(Sn |H0 ) of statistic S of test constructed as a result of simulation with size N
can then be used to estimate the achieved signi�cance level pvalue by the value of the
statistics S∗ calculated from the analyzed sample.

Thirdly, the application of tests, for which the limiting (asymptotic) distributions
of statistics are known, always leads to rejection of even true tested hypothesis with
increasing sample sizes. This is typical, for example, for goodness-of-�t tests, for a lot
of special tests for testing hypotheses of normal distribution, uniform distribution or
exponential distribution, etc. In [8], it has been shown that this problem is associated
not only and not so much with the increasing computational costs, as with the lim-
ited accuracy of the analyzed data (with limited measurement accuracy). A similar
problem hinders the correctness of application of homogeneity tests (homogeneity of
laws, homogeneity of variance, to a lesser degree of homogeneity of means) under
large samples. As will be shown, in the case of homogeneity tests, the reason lies in
the unevenness of measurements in the analyzed samples.

1 Estimation of the parameters of distribution

Estimates of the parameters of distributions can be obtained by various methods. The
maximum likelihood estimates (MLE) characterized by the best asymptotic properties
and calculated by maximizing the likelihood function

θ̂ = argmax
θ

n∏
j=1

f(xj, θ), (1)

or by maximizing the logarithm of this function, where θ is unknown parameter
(generally vector), f(x, θ) is the density function of the distribution law, x1, x2, ..., xn
are sample observation. For some laws, the distribution of MLE of parameters is
obtained as statistics simply computed from the observations of the samples, but in
most cases MLE are the result of using some iterative method.

When calculating MD-estimates (estimates of the minimum distance), some mea-
sure of proximity (distance) ρ(F (x, θ), Fn(x)) between the theoretical F (x, θ) and
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empirical Fn(x) distributions is minimized. MD-estimates can be obtain as a result
of solving following task

θ̂ = arg min
θ
ρ(F (x, θ), Fn(x)). (2)

For example, the statistics of nonparametric goodness-of-�t tests (Kolmogorov, Cramer-
von Mises-Smirnov, Anderson-Darling, Kuiper, Watson, and others [9]) can be used
as measures of proximity.

With relatively small sample sizes, L-estimates of parameters can be used. These
estimates are some linear combinations of order statistics (elements of variational
series X(1) < X(2) < ... < X(n) constructed from original sample x1, x2, ..., xn).

MLE of parameters of distribution, as a rule, are not robust. The presence of
anomalies of sample observations or the inaccuracy of the assumption about the
form of distribution leads to the construction of models with distribution functions
that are unacceptably deviating from empirical distributions. MD-estimations have
greater stability.

Obviously, the calculation of estimates (1) and (2) is associated with serious com-
putational di�culties for very large samples. In the case of grouped sample, the
sample observations are associated with a set of non-intersecting intervals, which di-
vide the domain of de�nition of a random variable into k non-intersecting intervals
by boundary points

x(0) < x(1) < . . . < x(k−1) < x(k),

where x(0) is the lower bound of the domain of de�nition of random variable X; x(k)

is the upper bound of the domain of de�nition of random variable X.
MLE by grouped sample [1] are calculated by maximizing the likelihood function

θ̂ = argmax
θ

k∏
i=1

P ni(θ), (3)

(3) where Pi(θ) =
x(i)∫

x(i−1)

f(x, θ)dx is the probability of the observation entering in the

i-th interval of values, ni is the number of observations that fell into the i-th interval,
k∑
i=1

ni = n. Estimates by grouped samples can be obtained by minimizing statistics

χ2

θ̂ = argmin
θ

n

k∑
i=1

(ni/n− Pi(θ))2

Pi(θ)
, (4)

as well as other statistics. In [10], it was shown that all of estimation method for
grouped data considered give consistent and asymptotically e�ective estimates under
appropriate regularity conditions. However, the most preferred estimates are MLE.
An important advantage of estimates based on grouped data is robustness [11].

In the case of presence of non-grouped data, estimates for grouped data are rarely
applied. This is due to the greater computational costs and necessity to numerical
integration in the computation Pi(θ), that requires appropriate software support.
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In the case of large sample sizes, the situation changes. Computational costs do
not change as computations grow with a �xed number of grouping intervals, but
increase only with an increase in the number of intervals k. This means that it is
advisable to use MLE by grouped samples in the conditions of Big Data. These are
robust and asymptotically e�cient estimates. The quality of estimates for small k
can be improved using asymptotically optimal grouping (AOG) [1, 12, 13], in which
the losses in Fisher information associated with grouping are minimized.

2 Application of χ2-test under large samples

The statistic of Pearson χ2 goodness-of-�t test has the following form

X2
n = n

k∑
i=1

(ni/n− Pi(θ))2

Pi(θ)
. (5)

In the case of testing simple hypothesis, this statistic obeys χ2
r-distribution with

r = k − 1 degrees of freedom if n→∞ and the null hypothesis is true.
In the case of testing composite hypothesis and estimating m parameters of dis-

tribution by sample statistic (4) obeys χ2
r-distribution with r = k − m − 1 degrees

of freedom, if the estimates are obtained by minimizing (4) these statistics, or using
MLE (3) (or other asymptotically e�ective estimates for grouped data).

The distribution of statistic (5) does not agree with χ2
k−m−1�distribution when

parameter estimations are obtained by non-grouped data. It is recommended to apply
the Nikulin-Rao-Robson test when MLE were obtained according to ungrouped data
[14, 15].

There are not principal problems that prevent application of Pearson χ2-test under
Big Data. Only computational di�culties are possible.

Let us illustrate the results of application Pearson χ2-test on the example of
testing hypothesis of normal distribution with density

f(x, θ) =
1

θ1

√
2π

exp

{
−(x− θ0)2

2θ2
1

}
.

by su�ciently large sample. The sample of n = 107 observations was modeled ac-
cording to the standard normal law N(0, 1) (θ0 = 0, θ1 = 1).

In Table 1, there are the results of testing simple hypotheses about standard
normal law N(0, 1) with various numbers of intervals in the case of equal-frequency
grouping (EFG) and k = 15 in the case of asymptotically optimal grouping (AOG).

In the case of AOG, the power of Pearson χ2-test maximizes for close competing
laws [16, 17, 18]. The table shows the values X2∗

n of statistics (5), which calculated by
the sample, and the corresponding values pvalue = P{X2

n ≥ X2∗
n |H0} of the achieved

signi�cance level. As you can see, the results depend on both the splitting method
and the number of intervals. The power of test also depends on these factors [19].
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Table 1: Results of testing simple hypothesis about N(0, 1)

AOG EFG

k 15 15 50 75 100 500 1000 2000

X2∗
n 7.75162 9.18380 56.8942 79.4904 96.5701 493.995 1044.57 2099.91

pvalue 0.90186 0.81910 0.20475 0.31026 0.55038 0.55482 0.15403 0.05702

Table 2 shows the results of testing composite hypotheses. MLE θ̂0 and θ̂1 obtained
for grouped data with the corresponding number of intervals k, statistics values X2∗

n

and pvalue are presented.
MLE of parameters by complete ungrouped sample are θ̂0 = 0.000274 and θ̂1 =

1.000177. In [20, 21], models of distributions of statistic (5) were constructed for the
case of testing composite hypothesis of normal law using MLE by ungrouped data
and AOG. The value of statistic calculated by the sample is X2∗

n = 6.600521 for
k = 15, the estimate of p-value obtained in accordance with the limit distribution
model given in [20, 21] is pvalue = 0.886707. These values indicate a good agreement
between the complete sample and the normal law N(0.000274, 1.000177).

Table 2: Results of testing composite hypothesis

AOG EFG
k 15 15 50 75 100 500 1000 2000

θ̂0 0.00028 0.00030 0.000244 0.00027 0.00027 0.00028 0.00027 0.00027

θ̂1 1.00715 1.00263 1.00173 1.00134 1.00112 1.00039 1.00031 1.00024
X2∗
n 927.920 99.9963 101.767 104.511 112.151 493.716 1043.47 2098.61

pvalue 0.0 5.58e-16 6.50e-06 0.00739 0.13938 0.53317 0.14922 0.05572

It should be noted that the MLE by grouped sample for k = 2000 and the MLE
by ungrouped sample are very close. At the same time, p-value for k = 2000 is much
lower than 0.886707.

Thus, the result of testing composite hypotheses using Pearson χ2-test signi�-
cantly depends on the number of intervals k.

3 Nonparametric goodness-of-�t tests under big sam-

ples

If one can omit the growth of computational di�culties, the main reason for possible
non-correctness of conclusions by big data using non-parametric goodness-of-�t tests
is the limited accuracy of the data in large sample.

As a rule, volumes of samples in Big Data (belonging to some continuous distri-
bution law) are practically unlimited, but the observations itself are presented with
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limited accuracy (rounded with some ∆). In essence, there is �violation of assump-
tion� that a continuous random variable is observed.

Suppose, the goodness-of-�t test with statistic S is used to test a simple hypothesis
H0 : Fn(x) = F (x), where Fn(x) is empirical distribution constructed from sample

x1, x2, ..., xn

of n observations. Suppose, there is limit distribution of statistic G(S |H0 ) for this
goodness-of-�t test. In the case of trueness of H0, the empirical distribution Fn(x)
corresponding to sample of continuous random variables (without rounding) converges
to the distribution function of this random variable F (x) for n→∞. The empirical
distribution of statistics GN(Sn |H0) based on samples of continuous random variable
for n → ∞ (and the number of simulation experiments N → ∞) converges to the
limit distribution G(S |H0 ) of this statistics.

However, the measurement results are rounded o� (�xed) with some ∆. Therefore,
max |Fn(x)− F (x)| will cease to decrease starting with certain n, depending on F (x),
domain of de�nition of the random variable and ∆. The distribution GN(Sn |H0) will
deviate from the limiting distribution G(S |H0 ) with increasing n (the more ∆, that
the less n).

The results of studies for demonstrating the e�ect of accuracy of data on the
distribution of statistics will be shown on 3 classical goodness-of-�t tests.

The Kolmogorov test statistics is used with the Bolshev correction[9]

SK =
√
nDn +

1

6
√
n

=
6nDn + 1

6
√
n

, (6)

where Dn = max (D+
n , D

−
n ), D+

n = max
1≤i≤n

{
i
n
− F (xi, θ)

}
,

D−n = max
1≤i≤n

{
F (xi, θ)− i−1

n

}
; n is the number of observations; x1, x2, . . . , xn are

sample values ordered ascending; F (x, θ) is distribution function of law tested. The
distribution of SK under simple hypothesis in the limit obeys the Kolmogorov law
with the distribution function K(S) [9].

The Cramer-von Mises-Smirnov test statistic is

Sω =
1

12n
+

n∑
i=1

{
F (xi, θ)−

2i− 1

2n

}2

(7)

and under testing simple hypothesis this statistic allows to law with distribution
function a1(s) [9]. The Anderson-Darling test statistic has the following form [22]

SΩ = −n− 2
n∑
i=1

{
2i− 1

2n
lnF (xi, θ) +

(
1− 2i− 1

2n

)
ln(1− F (xi, θ))

}
. (8)

In the case of testing simple hypothesis this statistic allows to law with distribution
function a2(s) [9].

In [8], the distributions of statistics (6)-(8) of nonparametric goodness-of-�t tests
were studied depending on the accuracy of recording the observed values of random
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variables. The number of signi�cant decimal places, to which the observed values
were rounded, was set. This determined the number of unique values that could be
in the generated samples. As a rule, the number of simulation experiments carried
out to simulate the empirical distributions of statistics was N = 106.

The deviation of real (empirical) distribution of statistics from the limit distri-
bution was studied by evaluating median S̃n of empirical distribution of statistics
obtained as a result of modeling. If real distribution of statistics with sample sizes n
does not deviate from the limit distribution, then the probability P

{
S > S̃n

}
calcu-

lated from the corresponding limit distribution is 0.5. If real distribution of statistics
shifts to large area of values (to the right of the limit distribution), the estimates

p̂v = P
{
S > S̃n

}
are decrease. One can judge the correctness of achieved signi�-

cance level pvalue calculated from the limit distribution of statistics (in the case of
testing simple hypotheses, respectively, by K(S), a1(S) and a2(S)) by the value of
deviation of estimates p̂v from 0.5.

When rounding to within 1 in samples belonging to N(0, 1), 9 unique values may
appear, when rounding to within ∆ = 0.1 about 86 unique values, with accuracy
∆ = 0.01 � about 956, to within ∆ = 0.001 � about 9830.

As the simulation results showed [8], when rounding up observations to integer
values, the use of limit distributions of test statistics is absolutely excluded.

The distributions of statistic of Kolmogorov test G(Sn |H0) is essentially discrete
under ∆ = 0.1. The deviation G(Sn |H0) from the limit distribution K(S) for ∆ = 0.1
should be taken into account already for n > 20, ∆ = 0.01 � for n > 250, and
if ∆ = 0.001 the value nmax shifts to value about 104. In the case of Cramer-von
Mises-Smirnov and Anderson-Darling tests, the deviation G(Sn |H0) from the limit
a1(S) and a2(S) for ∆ = 0.1 should be taken into account for n > 30, ∆ = 0.01 � for
n > 1000, and if ∆ = 0.001 � the value nmax shifts to 5× 105.

Figure 1 shows the dependence of distributions of statistics (7) of Cramer-von
Mises-Smirnov test on the degree of rounding ∆ at sample size n = 1000 for the case
of testing simple hypothesis about standard normal law. The limit distribution a1(S),
that occurs in the case without rounding, as well as real distributions of statistics
G(S1000 |H0) at degree of rounding ∆ = 0.01, 0.05, 0.1, 0.2, 0.3. As you can see if
∆ = 0.01 distribution G(S1000 |H0) does not practically di�er from a1(S), but with
increasing ∆ deviation G(S1000 |H0) from a1(S) rapidly increases.

Consequently, in order to analyze large samples using the appropriate nonpara-
metric goodness-of-�t tests with corresponding limit distributions, statistics should
be calculated not over the sample, but according to samples extracted by uniform
law from general population (original sample analyzed). The size of extracted sam-
ple should take into account the accuracy of the data (the number of possible unique
values in the sample) and not exceed certain value nmax at which (for given accuracy)
the distribution of test statistics G(Snmax |H0 ) does not really di�er from the limit
distribution G(S |H0 ).

In the case of testing composite hypotheses, the tested hypothesis has the form
H0 : F (x) ∈ {F (x, θ), θ ∈ Θ} , where Θ is domain of parameter θ de�nition. If
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Figure 1: Statistic distributions G(Sn |H0) of Cramer-von Mises-Smirnov test
depending on ∆ for n = 1000

the estimate θ̂ of scalar or vector parameter of law is based on the same sample
that the hypothesis is tested on, then the distribution of statistics G(S |H0 ) for any
nonparametric goodness-of-�t test di�ers signi�cantly from the limit distribution for
testing simple hypothesis [23]. If estimates of parameters obtain by the same sample
that hypothesis tested, the following factors in�uence the distribution of statistics
G(S |H0 ) [24]: distribution law F (x, θ) corresponding to the true hypothesis H0; type
of estimated parameter and the number of estimated parameters; in some situations,
speci�c values of parameter (for example, in the case of gamma distribution, etc.);
used parameter estimation method.

Obviously, in the case of testing composite hypotheses, we encounter the same
problems and must extract sample of size n < nmax from �general population� in order
to use when analyzing Big Data with limited accuracy of �xed data. For example,
it should be do for application of models of limit distributions of test statistics when
testing composite hypotheses [2, 3, 4, 5, 24].

It should be noted, if the estimation θ̂ of parameter is found by one of the above
methods by the entire big data array, and then the test is applied to the sample
of size n < nmax extracted from the same array, then when testing hypothesis H0 :
F (x) = F (x, θ̂), where θ̂ is previously obtained estimate, the distribution of statistics
G(S |H0 ) will as in the case of testing simple hypothesis.

All of the above fully applies to application of nonparametric Kuiper [25] and
Watson [26, 27] goodness-of-�t tests by big samples. The distributions of statistics of
third Zhang goodness-of-�t tests [28], which are based on Kolmogorov, Cramer-von
Mises-Smirnov and Anderson-Darling tests, depend on sample sizes n. Therefore,
there can be no talk about application of limit distributions of statistics. However,
distribution of statistics G(Sn |H0) in the same way depends on degree of rounding ∆.
Consequently, the critical values of statistics obtained for continuous random variables
and n cannot be used with the same n, but with signi�cant degree of rounding ∆. The
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problem can be resolved by statistical modeling (including, in the interactive mode
[6, 7]) of statistical distributions for given n and ∆ with the trueness of the tested
hypothesis H0. The empirical distribution of GN(Sn |H0 ) statistics S of corresponding
test constructed as a result of N simulation experiments under these conditions can
be used to estimate the achieved signi�cance level pvalue. That is how this problem
is solved in the ISW software system being developed [29].

4 Other goodness-of-�t tests under big samples

It should be noted that the degree of rounding of recorded data a�ects properties of
other tests in similar way. In particular, special tests aimed for testing the hypothesis
about normal law, uniform law, or exponential law, etc.

It should be noted that in the conditions of large samples (in the presence of
repeated observations), a lot of good tests turn out to be inoperable. This is due to
the fact that the type of statistics of these tests excludes the presence of repeated
observations (or the number of repeated values greater than the size of the �m win-
dow� used in statistics). This note concerns tests using entropy estimates (Vacicek
[30] and Alizadeh Noughabi [31] normality tests, Dudewics-van der Meulen [32] and
Zamanzade [33] uniformity tests), as well as new goodness-of-�t tests using estimates
of Kullback-Leibler information [34].

5 Homogeneity tests under big samples

In the case of multi-sample tests, which include homogeneity tests, 2 or more samples
are compared. The distributions of statistics of multi-sample tests are in�uenced by
non-uniformity of data presented in the analyzed samples. The two-sample Lehmann-
Rosenblatt homogeneity test was proposed in [35] and studied in [36]. Statistic based
on two samples x11, x12, ..., x1,n1 and x21, x22, ..., x2,n2 :

SLR =
1

n1n2(n1 + n2)

[
n1

n1∑
i=1

(ri − i)2 + n2

n2∑
j=1

(sj − j)2

]
− 4n1n2 − 1

6(n1 + n2)
, (9)

where ri is serial number (rank) of x1i; sj is serial number (rank) of x2j in the united
variation range.

The limit distribution of statistic (9) under true tested hypothesis H0 : F1(x) =
F2(x) is the same distribution a1(s) [36], which is limit for statistic of Cramer-von
Mises-Smirnov goodness-of-�t test.

Let us consider how degree of rounding a�ects distribution of statistic of homo-
geneity tests in the case of true H0 and belonging of analyzed sample observations to
the standard normal law.

Figure 2 demonstrates the dependence of distribution of statistic G(SLR |H0) of
Lehmann-Rosenblatt homogeneity test on degree of rounding ∆2 of observations in
the second sample when rounding in the �rst sample ∆1 = 0.01. The sample sizes
are ni = 1000.
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The deviation G(SLR |H0) from a1(S) turns out to be signi�cant already for ∆2 =
0.05. The deviation G(SLR |H0) from a1(S) rapidly increases with increasing sample
sizes for �xed ∆2. The deviation increases with ∆2 growth for �xed sample size.
The distributions of statistic G(SLR |H0) of Lehmann-Rosenblatt homogeneity test
depend on the di�erence between ∆1 and ∆2.

Figure 2: Statistic distributions of Lehmann-Rosenblatt homogeneity test
depending on ∆2 for ∆1 = 0.01 and ni = 1000

Similarly, the distributions of other two-sample homogeneity tests (Smirnov, Anderson-
Darling-Pettitt) depend on the di�erence between ∆1 and ∆2. It is natural that the
distributions of statistics of all multi-sample tests of homogeneity (set of which is con-
sidered in [37]) depend on the non-equivalence of data presentation in the analyzed
samples.

The distributions of statistic of parametric tests of homogeneity of means do
not su�er from such dependence on degree of rounding of measurements as tests of
homogeneity of laws considered above. At the same time, it should be noted that the
power of tests decreases with decrease of accuracy of data recorded.

The distributions of statistic of parametric tests of homogeneity of variances,
unlike tests of homogeneity of means, are more dependent on degree of rounding.
In some ways, this is due to the greater sensitivity of the variance estimates to the
accuracy of measurement results.

Parametric tests of Cochran, Bartlett, Fisher, Hartley, Neumann-Pearson and
Overall-Woodward Z-test are the most preferable in terms of power among the set
of parametric and non-parametric tests of homogeneity of variances. These tests
are equivalent in power in the case of two sample and ful�lling the assumption that
analyzed samples are normal. But in the case of k sample, the power advantage turns
out to be Cochran test has power advantage [38, 39, 40, 41]. Statistic of Cochran
test [42] can be written as

Q =
S2

max

S2
1 + S2

2 + · · ·+ S2
k

,
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where S2
max = max (S2

1 , S
2
2 , ... , S

2
k); k is the number of samples; S2

i , i = 1, k, are
the estimates of variances obtained by samples. Tested hypothesis H0 : σ2

1 = σ2
2 =

... = σ2
k deviates for large values of statistic. The distributions of statistic G(Qn |H0)

of Cochran test depend on the number of compared samples k and the sizes of these
samples ni.

Figure 3 illustrates the dependence of the distribution of statistics G(Qn |H0) of
Cochran test on degree of rounding of observations in the second sample ∆2 without
rounding in the �rst sample (∆1 = 0). Sample sizes are ni = 1000 and k=2. As can
be seen, the dependence of the distribution G(Qn |H0) on large (di�erent) degrees of
rounding ∆1 and ∆2 is very signi�cant.

Figure 3: Statistic distributions G(Qn |H0) of Cochran homogeneity test depending
on ∆2 for ∆1 = 0 and ni = 1000

The limited accuracy of measurements always leads to decrease of the power of
homogeneity tests. The drop in the power of Cochran test with increasing degree of
rounding (with equal ∆i , equal sample sizes n1 = n2 = 100, and k=2) is shown in
Table 3. The competing hypothesis has the form H1 : σ2 = 1.2σ1. Also this table
shows power of Klotz nonparametric test [43]. It is interesting that with increasing
∆i the power of nonparametric test decreases faster than power of parametric one.

Let us emphasize that, similarly, the value of rounding ∆i a�ects the distributions
of statistics and the power of other tests of homogeneity of variances.

So, the distributions of statistics G(S |H0) of parametric tests of homogeneity of
variances with the same degree of rounding ∆i of measurement in the analyzed sam-
ples do not di�er from corresponding distributions without rounding (∆i = 0, i =
1, k). However, the same distributions with di�erent ∆i di�er signi�cantly from dis-
tributions without rounding.

In the case of trueness of competing hypotheses, degree of rounding ∆i (measure-
ment registration accuracy) has signi�cant impact on the distributions of statistics
and on the power relative to these competing hypotheses (including under equal ∆i
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Table 3: Estimates of power of Cochran and Klotz tests under H1

Cochran test
α Without rounding ∆1 = ∆2 = 0.1 ∆1 = ∆2 = 0.2 ∆1 = ∆2 = 0.5
0.1 0.564 0.562 0.560 0.550
0.05 0.438 0.435 0.434 0.424

Klotz test
α Without rounding ∆1 = ∆2 = 0.1 ∆1 = ∆2 = 0.2 ∆1 = ∆2 = 0.5
0.1 0.540 0.539 0.535 0.504
0.05 0.413 0.412 0.407 0.378

in samples). Similar conclusions hold for the entire set of parametric tests of homo-
geneity of variances considered in [37].

Conclusions

It is advisable to use parameter estimation methods involving the grouping of data
for constructing probabilistic models by big samples. Such estimates are robust,
and computational costs do not depend on sample sizes in contrast to estimates by
ungrouped data.

There are no serious objections to application of Pearson χ2-test for analysis of
big samples. This test retains both its positive qualities and its inherent �aws.

The main problem preventing the correct application of nonparametric goodness-
of-�t tests for analysis of big samples is limited accuracy of data representation. Due
to limited accuracy with increasing sample volumes, the real distributions of statis-
tics deviate from the limit ones that occur under the assumption of continuity of
observed random variables. Therefore, the application of classical results for corre-
sponding tests may lead to incorrect conclusions. On the one hand, it is possible to
recommend application of these tests to samples extracted from Big data, the size
of these samples is limited by accuracy of presenting data analyzed (the number of
possible unique values in the sample). On the other hand, it is possible to propose
the use of statistical modeling methods to estimate real distributions of test statistics
GN(Sn |H0 ) (corresponding to degree of rounding ∆ of data in sample analyzed) and
then use GN(Sn |H0 ) to estimate achieved signi�cance level pvalue.

The reason for possible incorrectness of conclusions when using classical results
concerning the distributions of statistics of corresponding homogeneity tests may be
the non-equilibrium measurement in the compared samples. Statistical modeling can
be proposed to simulate actual distribution of statistics GN(Sn |H0 ) of test applied
(with appropriate degrees of rounding ∆i and sizes ni of compared samples). The
distribution GN(Sn |H0 ) obtained can then be used to estimate achieved signi�cance
level pvalue.
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Similar methodology of analysis of big samples is implemented in ISW software
system [29].
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