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Preface

The Fifth International Workshop �Applied Methods of Statistical Analysis. Sta-
tistical Computation and Simulation� � AMSA'2019 is organized by Novosibirsk State
Technical University.

The �rst two Workshops AMSA'2011 and AMSA'2013, as well as AMSA'2019,
took place in Novosibirsk. AMSA'2015 was held in the resort Belokurikha located at
the foothills of Altai. AMSA'2017, organized together with Siberian State University
of Science and Technologies called after academician M.F. Reshetnev, took place in
Krasnoyarsk.

The First Workshop �Applied Methods of Statistical Analysis� AMSA'2011 was
focused on Simulations and Statistical Inference, AMSA'2013 � on Applications in
Survival Analysis, Reliability and Quality Control, AMSA'2015 � on Nonparametric
Approach and AMSA'2017 � on Nonparametric Methods in Cybernetics and System
Analysis.

The Workshop AMSA'2019 was mainly oriented to the discussion of problems
of Statistical Computation and Simulation, which are crucial for the development of
methods of applied mathematical statistics and their e�ective application in practice.

The Workshop proceedings would certainly be interesting and useful for special-
ists, who use statistical methods for data analysis in various applied problems arising
from engineering, biology, medicine, quality control, social sciences, economics and
business. The Proceedings of International Workshop �Applied Methods of Statistical
Analysis� are indexed in Scopus starting with 2017 materials.

The organization of the Fifth International Workshop �Applied Methods of Statis-
tical Analysis. Statistical Computation and Simulation� � AMSA'2019 was supported
by the Russian Ministry of Education and Science (project 1.1009.2017/4.6).

Prof. Boris Lemeshko
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On Application of k-samples homogeneity tests

Boris Yu. Lemeshko and Irina V. Veretelnikova

Novosibirsk State Technical University, Novosibirsk, Russian Federation
e-mail: Lemeshko@ami.nstu.ru, ira-veterok@mail.ru

Abstract

New k-samples homogeneity tests based on the Smirnov, Lehmann-Rosenblatt
and Anderson-Darling two-sample tests have been proposed. The maximum
value of the statistics of the 2-sample test obtained during the analysis of com-
binations of pairs of samples is considered as a statistic of k-sample test. The
constructed models for limit distributions of statistics of the proposed tests for
k = 3, · · · , 11 are given. Comparative analysis of the power of the set of k-
samples tests, including the Zhang test, has been carried out. Power estimates
of the studied tests are presented in relation to some competing hypotheses,
which allows to order k-sample tests by preference with respect to di�erent
alternatives.

Keywords: k-samples tests, homogeneity tests, test statistic, distribution
of statistics, power of test.

Introduction

The necessity of solving the task of checking the hypotheses of two (or more) samples
of random values belonging to the same universe estimates (the homogeneity test)
may arise in di�erent areas. For example, this task may arise naturally when checking
the measurement means and trying to be certain that the random measurement errors
distribution law has not undergone any serious changes within some time period.

The task of testing the homogeneity of k-samples can be stated as follows. We have
xij, where j is the observation in the set of order statistics of i-sample j = 1, ni,i =
1, k. Let us assume that the i-sample correlates with the continuous distribution
function of Fi(x). It is required to test the hypothesis of H0 : F1(x) = F2(x) = · · · =
Fk(x) type without de�ning the common distribution law.

The general approach to the construction of k-sample homogeneity tests which
are the counterparts of the two-sample Kolmogorov-Smirnov and Cramer-von Mises
(Lehmann-Rosenblatt) tests, was considered in [1]. Under this approach, the statis-
tics of the criterion is a measure of deviation of empirical distributions corresponding
to speci�c samples from the empirical distribution based on the totality of the ana-
lyzed samples. The k-selective variant of the Kolmogorov�Smirnov test based on this
principle is mentioned in [2, 3]. The k-selective version of the Anderson-Darling test
is proposed in [4]. The homogeneity tests constructed by Zhang in [5, 6, 7] are the
development of the homogeneity tests by Smirnov [8], Lehmann-Rosenblatt [9, 10]
and Anderson�Darling [11] and allow us to analyze samples.

The application of k-samples tests in practice is constrained by the fact that, at
best, only critical values of statistics for the relevant ones are known, as in the case of
the Anderson-Darling test [4] or Kolmogorov-Smirnov tests [2, 12], and the possibility
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of using Zhang's criteria rests on the need to look for the distribution of test statistics
(or estimation of the achieved signi�cance level pvalue) using statistical modeling in
order to form a conclusion about the results of the hypothesis test.

The only exception is the homogeneity test χ2 for which the asymptotic distribu-
tions of statistics are known with the truth of H0.

In the present work we illustrate the dependence of the distributions of statistics
of the k-sample tests on the sample sizes and the number of k compared samples.
For the k-sample Anderson�Darling test [4] we give models of limit distributions of
statistics constructed by us [13, 14, 15]. Suggested variants of k-sample tests based on
the use of 2-sample Smirnov test [8], Lehmann-Rosenblatt test [9, 10] and Anderson-
Darling test [11], and present the constructed model for the limit distributions of the
statistics of the proposed test for various k. The constructed models make it possible
to carry out correct and informative conclusions with the calculation of pvalue with the
usage of the corresponding criteria. In addition, we present estimates of the power of
the test considered with respect to some competing hypotheses, which allows us to
organize the k-sample tests by preference with respect to various alternatives.

The studies were based on the intensive use of the Monte Carlo method in the
simulation of distributions of tests statistics.

1 k-samples homogeneity tests

1.1 Anderson-Darling test

The Anderson-Darling k-sample test is proposed in [4]. Let us denote the empirical
distribution function corresponding to the ith sample Fini(x), and the empirical dis-

tribution function corresponding to the combined sample volume n =
k∑
i=1

ni as Hn(x).

Statistics of the Anderson-Darling sample test (AD) is de�ned by the expression

A2
kn =

k∑
i=1

ni
∫
Bn

[Fini (x)−Hn(x)]2

(1−Hn(x))Hn(x)
dHn(x),

where Bn = x ∈ R : Hn(x) < 1. Under the assumption of continuity of Fi(x) on the
ordered combined sample X1 ≤ X2 · · · = Xn in [4] this simple expression for the
calculation of statistics is obtained:

A2
kn = 1

n

k∑
i=1

1
ni

n−1∑
j=1

(nMij−jni)2

j(n−j) ,

where Mij is number of elements in ith sample which are not larger than Xj. The
hypothesis H0 being tested is rejected for large values of statistics.

The statistics acquires the following �nal form in [4]:

Tkn =
A2
kn − (k − 1)√
D[A2

kn]
. (1)

where the dispersion is determined by the following expression [4]
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D[A2
kn] = an3+bn2+cn+d

(n−1)(n−2)(n−3)

with

a = (4g − 6)(k − 1) + (10− 6g)H,
b = (2g − 4)k2 + 8hk + (2g − 14h− 4)H − 8h+ 4g − 6,
c = (6h+ 2g − 2)k2 + (4h− 4g + 6)k + (2h− 6)H + 4h,

d = (2h+ 6)k2 − 4hk,

where

H =
k∑
i=1

1
ni
, h =

n−1∑
i=1

1
i
, g =

n−2∑
i=1

n−1∑
j=i+1

1
(n−i)j .

Asymptotic (limiting) distributions of statistics (1) depend on the k-number of
samples compared and do not depend on ni. With the growth of k the distribution
of statistics (1) slowly converges to the standard normal law.

In [4] for statistics (1) the table of critical values has been constructed for a number
of k. Based on the results of statistical modeling, we built models of limiting distri-
butions of statistics (1) for [13, 14, 15]. The laws of the family of beta-distributions
of the III type with density turned out to be good models when having the density
of

f(x) =
θθ02

θ3B(θ0, θ1)

[
x− θ4

θ3

]θ0−1[
1− x− θ4

θ3

]θ1−1

/

[
1 + (θ2 − 1)

x− θ4

θ3

]θ0+θ1

, (2)

as shown in Table 1 as BIII(θ0, θ1, θ2, θ3, θ4) having exact values for this law's param-
eters. These models are based on simulated samples of statistics with the number of
simulation experiments N = 106 and ni = 103.

1.2 Zhang test

The Zhang tests [5, 6, 7] allow comparing k ≥ 2 samples.
Let xi1, xi2, · · · , xini be ordered samples of continuous random variables with dis-

tribution functions Fi(x), (i = 1, k) and, as previously, X1 < X2 < · · · < Xn, where

n =
k∑
i=1

ni, is the uni�ed ordered sample. Let us de�ne the Rij rank of the jth ordered

observation xij of the ith sample in the uni�ed sample. Let X0 = −∞, Xn+1 = +∞,
and the ranks Ri,0 = 1, Ri,ni+1 = n+ 1.

In the tests a modi�cation of the empirical distribution function F̂ (t) is used,
having the values of F̂ (Xm) = (m− 0.5)/n at break points Xm,m = 1, n [5].

The ZK statistic of the Zhang homogeneity test is of the following form [5]:

ZK = max
1≤m≤n

{ k∑
i=1

ni

[
Fi,m ln

Fi,m
Fm

+ (1− Fi,m) ln
1− Fi,m
1− Fm

]}
, (3)
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Table 1: Models of the limiting distributions of statistics (1)

k Model
2 BIII(3.1575, 2.8730, 18.1238, 15.0000, -1.1600)
3 BIII(3.5907, 4.5984, 7.8040, 14.1310, -1.5000)
4 BIII(4.2657, 5.7035, 5.3533, 12.8243, -1.7500)
5 BIII(6.2992, 6.5558, 5.6833, 13.010, -2.0640)
6 BIII(6.7446, 7.1047, 5.0450, 12.8562, -2.2000)
7 BIII(6.7615, 7.4823, 4.0083, 11.800, -2.3150)
8 BIII(5.8057, 7.8755, 2.9244, 10.900, -2.3100)
9 BIII(9.0736, 7.4112, 4.1072, 10.800, -2.6310)
10 BIII(10.2571, 7.9758, 4.1383, 11.186, -2.7988)
11 BIII(10.6848, 7.5950, 4.2041, 10.734, -2.8400)
∞ N(0.0,1.0)

where Fm = F̂ (Xm), so that Fm = (m− 0.5)/n, and the calculation Fi,m = F̂i(Xm) is
done as follows. At the initial moment ji = 0, i = 1, k. If Ri,ji+1 = m, then ji := ji+1
and Fi,m = (ji − 0.5)/ni, otherwise, with Ri,ji < m < Ri,ji+1, Fi,m = ji/ni.

This is a right-hand test: the hypothesis H0 being tested is rejected at high
statistical values (3).

Statistic ZA of the homogeneity test of k samples is de�ned by the following
expression [5]:

ZA = −
n∑

m=1

k∑
i=1

ni
Fi,m lnFi,m + (1− Fi,m) ln(1− Fi,m)

(m− 0.5)(n−m+ 0.5)
, (4)

where Fm and Fi,m are calculated as shown above.
This is a left-side test: the hypothesis H0 being tested is rejected for small values

of statistics (4).
Distributions of the statistic (4) depend on the sample volume and the number of

samples compared as well.
Statistic ZC of the homogeneity test of k samples is de�ned by the following

expression [5]:

ZC =
1

n

k∑
i=1

ni∑
j=1

ln

(
ni

j − 0.5
− 1

)
ln

(
n

Ri,j − 0.5
− 1

)
. (5)

This is also a left-hand test: the tested hypothesis H0 is rejected at small values of
the statistic (5). The distributions G(ZC | H0) of the statistic depend on the sample
volume and the number of samples under analysis in the similar way.

The dependence of the distributions of statistics (3) - (5) of the volume of the
samples complicates the use of the Zhang test since there are problems with the
calculation of the evaluation of pvalue.
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At the same time, the lack of information on the laws of distribution of statistics
and tables of critical values in modern conditions is not a serious disadvantage of the
tests as it is easy to calculate the achieved levels of signi�cance of pvalue with the
software that supports the application of the tests, merely using statistic simulating
methods.

1.3 k-samples Tests Based on 2-sample Ones

In order to analyze the k-samples it is possible to apply a two-sample test with the
S statistic to each pair (totaling (k − 1)k/2 pairs), and the decision on accepting or
rejecting the H0 hypothesis will be made on the strength of all results. The following
statistic can be taken as a statistic of this k-sample tests (when having a right-hand
two-sample criterion):

Smax = max
1≤i≤k
i<j≤k

{Sij}, (6)

where Sij are the values of the statistics of the used two-sample criterion as calculated
in the course of analysis of the ith and the jth samples.

The hypothesis H0 to be tested will be rejected at large values of statistics Smax.
The advantage of this kind of test is that as a result a pair of samples will be deter-
mined, the di�erence between them being the most signi�cant from the standpoint
of the two-sample test used.

Statistics of the two-sample Smirnov, Lehmann-Rosenblatt and Anderson-Darling
tests can be used as Sij. In this case the distributions of the relevant statistics Smax
converge to some limiting ones, models of which can be found on the results of
statistical modeling.

1.3.1 Smirnov Maximum Test

The Dn2,n1 statistic used in the Smirnov test is calculated according to the following
formulae [8]:

D+
n2,n1

= max
1≤r≤n2

[ r
n2
− F1,n1(x2r)] = max

1≤s≤n1

[F2,n2(x2s)− s−1
n1

],

D−n2,n1
= max

1≤r≤n2

[F1,n1(x2r)− r−1
n2

] = max
1≤s≤n1

[ s
n1
− F2,n2(x1s)],

Dn2,n1 = max(D+
n2,n1

, D−n2,n1
).

With the H0 hypothesis being true and with unlimited increase of the number of
samples the statistic

SC =

√
n1n2

n1 + n2

Dn2,n1 (7)

will in the limit fall with the Kolmogorov arrangement of K(S) [8].
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In case of using the k-samples variant of the Smirnov test as Sij in (6) it seems
more preferable to use a modi�cation of the Smirnov statistic

Smod =

√
n1n2

n1 + n2

(
Dn2,n1 +

n1 + n2

4.6n1n2

)
, (8)

its distribution being always closer to the limiting distribution of Kolmogorov K(S)
[16]. Statistic Smax will be de�ned as SSmmax in this case.

With equal volumes of samples under comparison the statistic distributions SSmmax
will be of substantial discreteness (similar to the two-sample case, see Fig. 1) and
be di�erent from the asymptotic (limiting) distributions (see Fig. 2). If possible, it
is preferable to use co-primes as ni, then the distributions G(S | H0) of the SSmmax
statistic will not be actually di�erent from the asymptotic ones.

Figure 1: Statistic distributions with ni = 1000, i = 1, k

Models of asymptotic SSmmax statistic distributions with k = 3 ÷ 11 in the form
of beta distributions of the III type (2) BIII(θ0, θ1, θ2, θ3, θ4) having exact values of
parameters and constructed in this paper based on the results of statistic modeling
are shown in Table 2.

1.3.2 Lehman-Rosenblatt Maximum Test

Statistic of the two-sample Lehmann-Rosenblatt test as introduced in [9] is used in
the following form [8]:

T =
1

n1n2(n1 + n2)

(
n2

n2∑
i=1

(ri − i)2 + n1

n1∑
j=1

(sj − j)2

)
− 4n1n2 − 1

6(n1 + n2)
, (9)

where ri is the numerical order (rank) of x2i; sj is the numerical order (rank) of x1i

in the uni�ed ordered series. In [10] it was shown that the statistic (9) at the limit is
distributed as a1(t) [8].
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Figure 2: Asymptotic statistic distributions SSmmax

Table 2: Models of the limiting distributions of statistics SSmmax

k Model
2 K(S)
3 BIII(6.3274, 6.6162, 2.8238, 2.4073, 0.4100)
4 BIII(7.2729, 7.2061, 2.6170, 2.3775, 0.4740)
5 BIII(7.1318, 7.3365, 2.4813, 2.3353, 0.5630)
6 BIII(7.0755, 8.0449, 2.3163, 2.3818, 0.6320)
7 BIII(7.7347, 8.6845, 2.3492, 2.4479, 0.6675)
8 BIII(7.8162, 8.9073, 2.2688, 2.4161, 0.7120)
9 BIII(7.8436, 8.8805, 2.1696, 2.3309, 0.7500)
10 BIII(7.8756, 8.9051, 2.1977, 2.3280, 0.7900)
11 BIII(7.9122, 9.0411, 2.1173, 2.2860, 0.8200)

In the case of using the k-samples variant of the Lehman-Rosenblatt test as Sij
in the statistic SLRmax of form (6) statistic (9) is used. Dependence of distributions of
statistic SLRmax on the number of samples with H0 being true is illustrated in Fig. 3.

The constructed models of asymptotic (limiting) distributions of statistic SLRmax
with the number of compared samples k = 3÷ 11 are shown in Table 3. In this case
the Sb-Johnson distributions proved to be the best with the density of

f(x) = θ1θ2√
2π(x−θ3)(θ2+θ3−x)

exp

{
−1

2

[
θ0 − θ1 ln x−θ3

θ2+θ3−x

]2}
with exact values of this law's parameters, the law being shown in Table 3 as Sb(θ0, θ1,
θ2, θ3). These represented models allow �nding the estimates of pvalue by the values
of statistic SLRmax with corresponding k number of samples under comparison.
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Figure 3: Distributions of statistic SLRmax

Table 3: Models of the limiting distributions of statistics SLRmax

k Model
2 a1(t)
3 Sb(3.2854, 1.2036, 3.0000, 0.0215)
4 Sb(2.5801, 1.2167, 2.2367, 0.0356)
5 Sb(3.1719, 1.4134, 3.1500, 0.0320)
6 Sb(2.9979, 1.4768, 2.9850, 0.0380)
7 Sb(3.2030, 1.5526, 3.4050, 0.0450)
8 Sb(3.2671, 1.6302, 3.5522, 0.0470)
9 Sb(3.4548, 1.7127, 3.8800, 0.0490)
10 Sb(3.4887, 1.7729, 3.9680, 0.0510)
11 Sb(3.4627, 1.8168, 3.9680, 0.0544)

1.3.3 Anderson-Darling Maximum Test

The Anderson-Darling two-sample test was dealt with in [11]. This test's statistic is
de�ned by the following expression:

A2 =
1

n1n2

n1+n2−1∑
i=1

(Mi(n1 + n2)− n1i)
2

i(n1 + n2 − i)
, (10)

where Mi is the number of elements of the �rst sample, smaller or equal to the ith

element of the variation set of the uni�ed sample. Distribution a2(t) will be the
limiting distribution (10) with the tested hypothesis H0 being true [8].

In the case of using the k-samples variant of the Anderson-Darling test as Sij
in the SADmax statistic (6) statistic (10) will be used. Dependence of distributions of
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statistic SADmax on the number of samples with H0 being true is shown in Fig. 4.

Figure 4: Distributions of statistic SADmax

Models of asymptotic (limiting) distributions of statistic SADmax for the k number
of samples under comparison k = 3 ÷ 11 have been constructed for distributions
G(SADmax | H0) and shown in Table 4. In this case the beta distributions of the III
type proved to be the best (2) as shown as BIII(θ0, θ1, θ2, θ3, θ4) with exact values
of parameters shown in Table 4; these can be used for estimating pvalue with the k
number of compared samples.

Table 4: Models of the limiting distributions of statistics SADmax

k Model
2 a2(t)
3 BIII(4.4325, 2.7425, 12.1134, 8.500, 0.1850)
4 BIII(5.2036, 3.2160, 10.7792, 10.000, 0.2320)
5 BIII(5.7527, 3.3017, 9.7365, 10.000, 0.3000)
6 BIII(5.5739, 3.4939, 7.7710, 10.000, 0.3750)
7 BIII(6.4892, 3.6656, 8.0529, 10.500, 0.3920)
8 BIII(6.3877, 3.8143, 7.3602, 10.800, 0.4800)
9 BIII(6.7910, 3.9858, 7.1280, 11.100, 0.5150)
10 BIII(6.7533, 4.2779, 6.6457, 11.700, 0.5800)
11 BIII(7.1745, 4.3469, 6.6161, 11.800, 0.6100)

1.4 Homogeneity Test χ2

The homogeneity test χ2 can successfully be used to analyze k ≥ 2 samples. In this
case the common area of the samples is split into r intervals (groups). Let ηij be the
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number of elements of the ith sample of the jth interval, then ni =
r∑
j=1

ηij.

The χ2 homogeneity test statistic will be of the following form:

χ2 = n
k∑
i=1

r∑
j=1

(ηij − νjni/n)2

νjni
= n

( k∑
i=1

r∑
j=1

η2
ij

νjni
− 1

)
, (11)

where νj =
k∑
l=1

ηlj is the total number of elements of all samples falling into the jth

interval. The χ2-distribution with the number of degrees of freedom (k − 1)(r − 1)
shall be the asymptotic distribution of statistic [17].

2 Comparative analysis of powers

One of the main characteristics of the statistical test is its power relative to a given
competing hypothesis H1. The power is the remainder of 1 − β, where β is the
possibility of type II error (accept hypothesis H0 with H1 being true) at speci�ed
probability α of type I error (reject H0 when true).

The power of k-samples tests was investigated for various k and situations when
the tested hypothesis H0 was whether all samples belonged to the standard normal
law, the competing hypothesis H1 being if all samples but the last one belonged to the
standard normal law and the last sample belonged to the normal law with the shift
parameter θ0 = 0.1 and the scale parameter θ1 = 1; hypothesis H2 being that the
last sample belonged to the normal law with the shift parameter θ0 = 0 and the scale
parameter θ1 = 1.1, the competing hypothesis H3 being the last sample belonged to
the logistic law with the density of

f(x) = 1
θ1
√

3
exp{−π(x−θ0)

θ1
√

3
}/[1 + exp{−π(x−θ0)

θ1
√

3
}]2

and parameters θ0 = 0 and θ1 = 1.
The power was evaluated on the results of modeling statistic distributions with

the tested G(S | H0) being true, and competing hypotheses G(S | H1), G(S | H2) and
G(S | H3) having equal volumes of ni compared samples. As an example, Tables 5
and 6 show evaluation of the power of tests with α = 0.1 for k = 3 and k = 4
correspondingly. In the case of the homogeneity test χ2 the uni�ed sample was split
into r = 10 equifrequent intervals.

Thus-conducted power analysis of k-samples tests allows making some conclusions.
The tests can be organized power-wise with respect to changes in the shift pa-

rameter in the following way:

SADmax � AD � SLRmax � SSmmax � ZC � ZA � ZK � χ2.

With respect to changes in the scale parameter:

ZC � ZA � ZK � AD � χ2 � SADmax � SSmmax � SLRmax.
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Table 5: Assessment of the power of test against alternatives H1, H2 and H3, k = 3,
ni = n

Test ni = 20 ni = 50 ni = 100 ni = 300 ni = 500 ni = 103

Against alternative hypothesis H1

SADmax 0.113 0.134 0.171 0.314 0.450 0.712
AD 0.113 0.134 0.171 0.313 0.449 0.711
SLRmax 0.114 0.134 0.168 0.306 0.437 0.694
SSmmax 0.110 0.128 0.155 0.272 0.383 0.622
ZC 0.113 0.131 0.160 0.273 0.380 0.612
ZA 0.112 0.130 0.158 0.268 0.371 0.599
ZK 0.110 0.125 0.144 0.231 0.321 0.525
χ2 0.100 0.108 0.120 0.173 0.226 0.385

Against alternative hypothesis H2

ZC 0.107 0.125 0.160 0.319 0.475 0.771
ZA 0.107 0.126 0.162 0.319 0.470 0.767
ZK 0.107 0.123 0.147 0.263 0.376 0.621
AD 0.104 0.111 0.124 0.191 0.273 0.509
χ2 0.105 0.114 0.129 0.202 0.277 0.495
SADmax 0.102 0.107 0.114 0.165 0.231 0.446
SSmmax 0.103 0.104 0.114 0.136 0.164 0.253
SLRmax 0.103 0.104 0.108 0.127 0.152 0.241

Against alternative hypothesis H3

ZA 0.103 0.108 0.116 0.181 0.279 0.580
ZC 0.103 0.108 0.116 0.176 0.270 0.568
ZK 0.104 0.110 0.117 0.170 0.233 0.423
χ2 0.100 0.113 0.121 0.173 0.226 0.382
AD 0.103 0.107 0.114 0.148 0.189 0.315
SSmmax 0.102 0.105 0.111 0.148 0.183 0.288
SADmax 0.102 0.104 0.110 0.134 0.166 0.272
SLRmax 0.103 0.104 0.107 0.124 0.145 0.218

At that, the Zhang tests of ZA and ZC statistics are almost equivalent power-wise,
and the Anderson-Darling test is noticeably inferior to the Zhang tests.

The tests can be organized power-wise with respect to situations when all but one
sample belongs to the normal law and the last one belongs to the logistic law, in the
following way:

ZA � ZC � ZK � χ2 � AD � SSmmax � SADmax � SLRmax.

It can be noted that with the increase in the number of compared samples of
the same volumes the power of the criterion relative to similar competing hypotheses
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decreases as a rule, which is absolutely natural. It is more di�cult to single out a
situation and to give preference to a competing hypothesis, when only one of the
analyzed samples belongs to some other law. We can't but mention that the Zhang
tests with statistics of ZK , ZA, ZC possess quite substantial advantage in power with
respect to some alternatives.

Table 6: Assessment of the power of test against alternatives H1, H2 and H3, k = 4,
ni = n

Test ni = 20 ni = 50 ni = 100 ni = 300 ni = 500 ni = 103

Against alternative hypothesis H1

SADmax 0.112 0.131 0.165 0.302 0.438 0.706
AD 0.112 0.131 0.164 0.301 0.433 0.701
SLRmax 0.113 0.130 0.162 0.293 0.425 0.686
SSmmax 0.111 0.125 0.151 0.261 0.366 0.605
ZC 0.111 0.126 0.155 0.260 0.368 0.595
ZA 0.111 0.127 0.153 0.255 0.360 0.579
ZK 0.109 0.121 0.141 0.219 0.300 0.502
χ2 0.102 0.109 0.118 0.167 0.221 0.358

Against alternative hypothesis H2

ZC 0.106 0.122 0.158 0.306 0.468 0.761
ZA 0.107 0.124 0.158 0.305 0.463 0.745
ZK 0.106 0.120 0.145 0.249 0.367 0.606
AD 0.104 0.110 0.123 0.180 0.254 0.474
χ2 0.107 0.113 0.127 0.189 0.271 0.458
SADmax 0.101 0.104 0.111 0.145 0.195 0.381
SSmmax 0.102 0.105 0.108 0.128 0.153 0.221
SLRmax 0.102 0.103 0.105 0.118 0.135 0.197

Against alternative hypothesis H3

ZA 0.103 0.107 0.116 0.179 0.274 0.566
ZC 0.103 0.107 0.115 0.173 0.257 0.555
ZK 0.103 0.107 0.114 0.161 0.222 0.410
χ2 0.102 0.110 0.116 0.164 0.218 0.357
AD 0.102 0.106 0.113 0.143 0.179 0.291
SSmmax 0.103 0.104 0.112 0.138 0.166 0.257
SADmax 0.101 0.103 0.107 0.124 0.147 0.229
SLRmax 0.102 0.102 0.105 0.116 0.130 0.183
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Conclusions

The constructed models of statistic limiting distributions for k-samples homogeneity
tests (the Anderson-Darling ones and those proposed in this paper) allows obtaining
correct and informational conclusions on and calculating the tests signi�cance pvalue.
Software can is available for this purpose [18].
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