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Abstract

In present work, a “real-time” ability to simulate and research the distributions of tests
statistics in the course of testing the complex goodness-of-fit hypothesis (for distributions
with estimated parameters) is implemented by the use of parallel computing. It makes it
possible to make correct statistical inferences even in those situations when the distribution
of the test statistic is unknown (before the testing procedure starts).
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Introduction

In composite hypotheses testing in the form H0 : F (x) ∈ {F (x, θ), θ ∈ Θ}, when the estimate θ̂

of scalar or vector distribution parameter θ is calculated by the same sample, the nonparametric
goodness-of-fit Kolmogorov, ω2 Cramer-Mises-Smirnov, and Ω2 Anderson-Darling tests lose their
distribution-free property.

The value
Dn = sup

|x|<∞
|Fn(x)− F (x, θ)| ,

where Fn(x) is the empirical distribution function, n is the sample size, is used in Kolmogorov test
as a distance between the empirical and theoretical laws. When testing hypotheses, this statistic
is usually used with Bolshev’s correction (Bolshev, [3]) in the form (Bolshev and Smirnov, [4])

SK =
6nDn + 1

6
√

n
(1)

where Dn = max(D+
n , D−

n ), D+
n = max

1≤i≤n

{

i
n
− F (xi, θ)

}

, D−
n = max

1≤i≤n

{

F (xi, θ)− i−1
n

}

, n is the

sample size, x1, x2, . . . , xn are sample values in an increasing order. The distribution of statistic (1)

in testing simple hypotheses obeys the Kolmogorov distribution law K(S) =
∞
∑

k=−∞
(−1)k

e−2k
2s2

.

In ω2 Cramer-Mises-Smirnov test, one uses a statistic in the form

Sω = nω2
n =

1

12n
+

n
∑

i=1

{

F (xi, θ)−
2i− 1

2n

}2

, (2)
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and in test of Ω2 Anderson-Darling type (Anderson and Darling, [1, 2]), the statistic in the form

SΩ = −n− 2
n

∑

i=1

{

2i− 1

2n
ln F (xi, θ) +

(

1− 2i− 1

2n

)

ln(1− F (xi, θ))

}

. (3)

In testing a simple hypothesis, statistic (2) obeys the distribution (see Bolshev and Smirnov, [4])
with the CDF

a1(S) = 1√
2s

∞
∑

j=0

Γ(j+1/2)
√
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{
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,

where I− 1

4

(·), I 1

4

(·) are modified Bessel functions, Iν(z) =
∞
∑

k=0

(z/2)ν+2k

Γ(k+1)Γ(k+ν+1)
, |z| <∞, |arg z| < π,

and statistic (3) obeys the distribution (Bolshev and Smirnov, [4]) with the CDF

a2(S) =
√
2π
S

∞
∑

j=0
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exp
{
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×
∞
∫

0

exp
{

S
8(y2+1)

− (4j+1)2π2y2

8S

}

dy.

1 Statistic distributions of the tests in testing composite

hypotheses

In composite hypotheses testing, the conditional distribution law of the statistic G(S|H0) is
affected by a number of factors: the form of the observed law F (x, θ) that corresponds to the true
hypothesis H0; types and number of parameters to be estimated; sometimes, it is a specific value
of the parameter (e.g., in case of gamma-distribution, inverse Gaussian law, generalized Weibull
distribution, beta-distribution families); the method of parameter estimation.

The paper Kac [13] was a pioneer in investigating statistic distributions of the nonparametric
goodness-of-fit tests with composite hypotheses. Then, various approaches to the solution to this
problem where used (Darling [6, 7], Durbin [8, 9, 10], Gihman [12], Martynov [27], Pearson
and Hartley [30], Stephens [31, 32], Chandra [5], Tyurin [33], Tyurin [34], Dzhaparidze and
Nikulin [11], Nikulin [28, 29]).

In our research (Lemeshko and Postovalov [14, 15, 16], Lemeshko and Maklakov [17],
Lemeshko [18, 24, 25], Lemeshko and Lemeshko [19, 20, 21], Lemeshko S. [26]), statistic distri-
butions of the nonparametric goodness-of-fit tests are investigated by the methods of statistical
simulation, and approximate models of the laws are found for constructed empirical distributions.
The most complete list of the constructed models of statistic distributions and tables of percent-
age points for nonparametric goodness-of-fit tests is provided in Lemeshko [18, 24, 25]. These
models and tables are usable when testing complex hypotheses if maximum likelihood estimators
were applied.

For a number of distributions often used in applications for description of random variates,
distributions of statistics of nonparametric goodness-of-fit tests only have a limited set of depen-
dences: the form of the observed law F (x, θ) that corresponds to the true hypothesis H0; types
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and number of parameters to be estimated; the method of parameter estimation. In these cases,
there are no impediments for studying test statistic distributions by means of statistical simula-
tion and further construction of approximate models for them when testing complex hypothesis
(Lemeshko [18, 24, 25]).

Complications arise in case the statistic distributions G(S |H0 ) of nonparametric goodness-
of-fit tests depend on a certain value of parameter/parameters of the distribution F (x, θ) when
testing complex hypotheses (for gamma distribution, two-sided exponential law, inverse Gaussian
law, generalized Weibull distribution, and beta-distribution families).

The existing dependence on parameters values should not be neglected. For example, in
composite hypotheses testing subject to gamma-distribution with the density function f(x, θ) =

xθ0−1

θ
θ0
1
Γ(θ0)

exp
(

− x
θ1

)

, limiting statistics distributions of the nonparametric goodness-of-fit tests de-

pend on value of the form parameter θ0. Figure 1 illustrates the dependence of the Kolmogorov
statistic distribution upon the value θ0 in testing a composite hypothesis only in the case of
calculating maximum likelihood estimates (MLE) for the scale parameter of gamma-distribution.

The most serious impediment to a complete solution of the problem of testing complex
hypotheses with the use of non-parametric goodness-of-fit tests is that the distributions of the
test statistics depend on specific values of shape parameters of the observed laws. In papers
(Lemeshko [18, 19, 20, 21, 24, 25]) models of distributions of statistics were obtained for a limited
set of combinations of (integer) values of shape parameters (for gamma distribution, two-sided
exponential law, inverse Gaussian law, generalized Weibull distribution, and beta-distribution
families). It is unrealistic to build the models for an infinite set of combinations of the parameters
values.

Figure 1: The Kolmogorov statistic (1) distributions for testing composite hypotheses with
calculating MLE of scale parameter

In present work, a “real-time” ability to simulate and research the distributions of tests
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statistics in the course of testing the complex goodness-of-fit hypothesis (for distributions with
estimated parameters) is implemented by the use of parallel computing. It makes it possible
to make correct statistical inferences even in those situations when the distribution of the test
statistic is unknown (before the testing procedure starts).

2 Testing complex hypotheses in “real-time”

In present work, an approach is proposed and implemented that is based upon authors’ evolving
software and the use of simulation (Lemeshko [23]). Computational processes in the simulation
of statistics of various tests can be parallelized rather easily by the use of available resources of
nearby computer network. This makes it possible to dramatically reduce the time required for
simulation (studying) an unknown distribution of the statistic G(S|H0). Statistical analysis is
carried out by the following scheme (Fig. 2) in case of the use of nonparametric goodness-of-fit
tests for testing complex hypotheses in regard to laws with characteristic dependence of statistic
distribution on parameter values. Such an approach was used in Lemeshko [22]. Here the studying
of G(S|H0) is carried out in “real-time” of testing the hypothesis.

x1, x2, . . . , xn

↓
Calculation of θ̂ for F (x, θ)

↓
Calculation of the test statistic S∗

↓
Simulation: GN(Sn|H0) for H0 : F (x) ∈ {F (x, θ), θ ∈ Θ} when θTRUE = θ̂

↓
Calculation of P {Sn > S∗}

Figure 2: Testing the complex hypothesis H0 : F (x) ∈ {F (x, θ), θ ∈ Θ}

When testing complex the hypothesis H0 : F (x) ∈ {F (x, θ), θ ∈ Θ} by an existing sample
x1, x2, . . . , xn, the parameter vector estimate θ̂ for the law F (x, θ) is found in accordance with the
selected method. Then, the value of statistic S∗ of the goodness-of-fit test in use is calculated in
accordance with the estimate θ̂ found. For making an inference on whether to reject or to accept
the hypothesis H0 under test, it’s necessary to know the distribution G(S |H0) of the test statistic
that corresponds to the parameter value θ̂.

After that, statistical simulation procedure is started that results in obtaining empirical
distribution GN(Sn |H0) of the test statistic for the corresponding sample volume n and the given
number of simulations N and F (x, θ) with the parameters vector θ = θ̂. One can find an estimate
of an achieved significance level P{Sn > S∗} or estimates of percentage points by the use of
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empirical distribution GN(Sn |H0) . The hypothesis is not rejected if P{Sn > S∗} > α, where α

is a given type I error probability.
The value of N defines the required accuracy of simulation of G(Sn |H0) : the greater N

the better. However, time spent for simulation increases along with growth of N , therefore, one
can determine N during parallelization of simulation process basing upon available computer
resources (number of processors and cores) that could be used for the problem under solution.

The probability that elements of θ̂ are integer is zero. Thus, one should cautiously use models
and percentage points of test statistic distributions for values of parameters close to integer ones
provided in (Lemeshko [18, 19, 20, 21, 24, 25]) as, with interpolation applied, results obtained
can be far from the true distribution G(S |H0) with the given θ̂.

Let us consider an example where a complex hypothesis is tested in regard to the inverse

Gaussian law with the density function f(x) =
(

θ1

2πx3

)1/2
exp

(

− θ1(x−θ0)
2

2θ2
0
x

)

. In this case, distribu-

tions G(S |H0) of the nonparametric tests depend on specific values of θ0 and θ1.
The sample under analysis is presented in Table 1 (θ0 = θ1 = 2.5). Maximum likelihood

estimates of the parameters: θ̂0=2.4706, θ̂1=2.5769. In Table 2, values of the tests statistics and
achieved significance levels (P-values) obtained by test statistic distributions simulated (in “real
time”) under different values of N are given.

Table 1: 100 pseudorandom numbers from the inverse Gaussian distribution

0.278 0.633 0.928 1.078 1.334 1.937 2.297 2.630 3.554 5.674
0.312 0.686 0.933 1.080 1.497 1.965 2.362 2.919 3.593 5.989
0.358 0.716 0.936 1.089 1.612 1.991 2.364 2.995 3.948 6.284
0.361 0.776 0.938 1.113 1.671 2.012 2.417 3.002 3.996 6.863
0.362 0.777 0.956 1.119 1.680 2.026 2.467 3.120 4.053 7.580
0.374 0.789 0.996 1.159 1.687 2.027 2.566 3.149 4.141 7.644
0.403 0.796 1.038 1.165 1.731 2.069 2.577 3.166 4.363 7.874
0.590 0.805 1.053 1.166 1.735 2.146 2.599 3.224 4.597 9.236
0.597 0.822 1.060 1.192 1.763 2.210 2.621 3.278 5.022 11.704
0.599 0.849 1.066 1.245 1.898 2.213 2.628 3.528 5.201 20.069

It should be noted, that distributions of nonparametric goodness-of-fit test statistics (1)–
(3) for θ̂0 =2.4706, θ̂1=2.5769 differ substantially from corresponding distributions under different
combinations of integer values of θ0 and θ1.

Another example is generalized Weibull distribution with the density function

f(x; θ0, θ1) =
θ0

θ1
xθ0−1 (1 + xθ0

)
1

θ1
−1

exp
{

1−
(

1 + xθ0
)

1

θ1

}

,

θ0 = θ1 = 2.5 (Table 3). Maximum likelihood estimates of the parameters: θ̂0 = 2.4718, θ̂1 =
2.5187. Values of the tests statistics and P-values obtained by simulation are given in Table 4.
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Table 2: P-values of the tests for different volumes of simulations (inverse Gaussian distribution)

Test S∗ P {Sn > S∗}
N=1000 N=5000 N=10000 N=100000 N=1000000

K 0.59361 0.656 0.668 0.668 0.670 0.671
ω2 0.05380 0.562 0.576 0.574 0.578 0.578
Ω2 0.35021 0.556 0.570 0.568 0.566 0.566

Table 3: 100 pseudorandom numbers from the generalized Weibull distribution

0.199 0.647 0.932 1.059 1.253 1.648 1.855 2.033 2.482 3.356
0.248 0.703 0.937 1.060 1.367 1.664 1.891 2.180 2.500 3.474
0.311 0.734 0.939 1.067 1.444 1.680 1.892 2.218 2.658 3.583
0.316 0.793 0.941 1.086 1.482 1.692 1.920 2.221 2.679 3.791
0.317 0.794 0.956 1.091 1.488 1.700 1.948 2.279 2.703 4.040
0.333 0.806 0.991 1.122 1.493 1.701 2.000 2.293 2.741 4.062
0.373 0.812 1.025 1.127 1.521 1.725 2.006 2.301 2.835 4.139
0.600 0.821 1.038 1.128 1.523 1.770 2.017 2.328 2.932 4.587
0.608 0.837 1.043 1.147 1.541 1.807 2.029 2.354 3.104 5.351
0.611 0.862 1.049 1.188 1.624 1.808 2.032 2.470 3.174 7.676

Table 4: P-values of the tests for different volumes of simulations (generalized Weibull
distribution)

Test S∗ P {Sn > S∗}
N=1000 N=5000 N=10000 N=100000 N=1000000

K 0.60473 0.670 0.672 0.670 0.673 0.675
ω2 0.05519 0.596 0.599 0.594 0.597 0.597
Ω2 0.35462 0.577 0.580 0.580 0.580 0.580
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Conclusions

In this work, software is implemented that makes it possible to test complex hypotheses with the
use of nonparametric goodness-of-fit test in cases when statistic distributions depend on specific
values of the observed distributions.

This research was partially supported by the Russian Foundation for Basic Research (Project
№ 09-01-00056-a), the Analytical Departmental Targeted Program “Development of the Potential
of Institutes of Higher Education” (Project № 2.1.2/11855), and the Federal Targeted Program of
the Ministry of Education and Science of the Russian Federation “Academic and Teaching Staff
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