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INTRODUCTION

Reliability and survival problems involving lifetime type data are investigated in many areas of science
and technology. In engineering calculations, such data are the failure times of some equipment or technical
systems. In medicine, these are the time to a change of some biochemical indices, the time to remission after
a certain type of treatment or the lifetime of patients, etc.

Typically, a common property of the data (measurement results, observations of test objects) analyzed
in such problems is their incompleteness. For example, during tests, only some of the test objects may fail
or some objects may be not tested for some reason. The test time may be limited, and a significant part
of the objects may remain operational by the end of the experiment. Such data are called censored on the
right. If experiments are limited in time, a censored sample of type I is obtained. Type II censoring occurs
if tests are continued until the occurrence of a predetermined number of failures (measurement results).

Lifetime data have been analyzed in many publications, many methods of description and representation
have been developed, and various models taking into account their characteristics for different applications
have been proposed. Early papers [1–10] mostly considered simple models with different parametrizations of
the reliability function. Among these models are, in particular, reliability functions based on the exponential
probability distribution, Weibull distribution, gamma distribution, inverse Gaussian distribution, and others.

Accelerated failure time (AFT) models hold a special place in reliability theory; recently, they have
attracted increased interest due to the growth in the production of highly reliable and highly technological
products and systems. The design and production of such devices are geared to provide their trouble-free
operation over a long period of time. During the time that can be allotted for reliability tests and studies
under normal operating conditions, the probability of failure of a device is very low. In order to obtain
sufficient data for analysis in such a situation, tests are carried out at loads exceeding the load calculated for
normal conditions. Such tests are referred to as accelerated tests. The use of increased loads shortens the
lifetime of the systems, and failures will occur within the time allotted for collection of experimental data.

AFT models are designed to evaluate the reliability functions of articles (systems) operating under normal
operating conditions (under normal loading) from failure data obtained in accelerated tests. The construction
of AFT models for various designs of experiments and analytical calculations for their parametrizations are
discussed in detail in [5–8].
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Although the construction of parametric AFT models has been the subject of numerous (mostly foreign)
publications, many problems remain unsolved. First, the quality of AFT models (estimates of parameters)
are significantly affected by the presence of censored observations. Second, there are a number of problems
related to the validation of the constructed AFT models.

For example, maximum likelihood estimates (MLE) of distribution parameters from type I or II censored
samples are asymptotically efficient, i. e., they asymptotically obey the normal distribution. However, in the
case of limited sample sizes and in the presence of a significant portion of censored observations of type I
or II, the distributions of the parameter estimates of the observed probability distributions are asymmetric
and the estimates are biased [11, 12]. Naturally, this affects the quality of the distribution models.

In addition, censoring influences the procedures of validating the models. For example, in tests of com-
posite hypotheses that complete samples fits some theoretical law and in estimation of the law parameters
from the same sample, the distributions of nonparametric goodness-of-fit test statistics depend on the fol-
lowing factors: the law used to test the goodness-of-fit, the number and type of the estimated parameters,
and the value of the shape parameter [13–24]. In the case of censored samples, these factors also include the
dependence of the distributions of the statistics on the degree of censoring [25].

In the construction and analysis of AFT models, the above-mentioned problems related to the presence
of censored data persist and even increase.

The most common method of testing the fit of a parametric AFT model to observation (measurement)
results is to analyze the distributions of so-called residuals. If the hypothesis that the sample of residuals
fits the baseline distributions is not rejected, this is evidence of the validity of the constructed AFT model.
However, in publications devoted to accelerated failure test statistics, the validation of constructed AFT
models is often not mentioned [1–3, 5–8] or the goodness-of-fit of residual samples to the baseline distributions
is tested using graphical methods [9]. The reasons for this lie in the problems associated with the use of
goodness-of-fit criteria for testing composite hypotheses [13–24], aggravated by the presence of censored
observations in reliability studies, which affects the properties of estimates of model parameters [11, 12] and,
in turn, is also reflected in distributions of the statistics of the goodness-of-fit tests used [25]. The need
to validate AFT models exists, and this problem has been extensively studied, but at the moment we can
project that it cannot be solved using a purely analytical approach.

The aim of this work is to investigate issues of validation of parametric AFT models through an analysis
of residual samples.

AFT MODEL

Let T be a nonnegative random variable which determines the time of operation of the test object to
failure. The reliability function is the probability of failure-free operation for some time t:

S(t) = P{T > t} = 1− F (t), (1)

where F (t) is the corresponding probability distribution function.
The reliability of an object depends on some of its characteristics and operation conditions. The influ-

ence of these characteristics is taken into account by means of explanatory variables (covariates), which in
reliability theory are commonly referred to as stresses or loads.

A stress x(·) is elevated with respect to a stress y(·) if the corresponding reliability functions satisfy
the relation

Sx(·)(t) ≤ Sy(·)(t), t ≥ 0. (2)

The stress x(·) can be any operational parameter: voltage, pressure, humidity, temperature, etc.
The purpose of accelerated failure tests is to obtain data at elevated loads, which are then uses to evaluate

the reliability function corresponding to the normal operation conditions.
For example, we consider the following possible test plans:
1. The observed objects are divided into l groups and are tested under stresses constant in time x1, . . . ,xl,

i. e. ni objects of the ith group are tested under a stress xi, i = 1, l.
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2. All objects are tested under a step stress x(t):

x(t) =


x1, t0 < t ≤ t1,

x2, t1 < t ≤ t2,
. . .
xl, tl− 1 < t ≤ tl.

(3)

The test plan can be a combination of these plans.
The sample of observations resulting from the tests is usually written in the form

Xn = {(X1, δ1,x1), . . . , (Xn, δn,xn)}, (4)

where δi = 1 if Xi is the moment of failure (complete observation) and δi = 0 if Xi is the moment of
censoring; xi is the covariate value at which the observation Xi was obtained.

A parametric AFT model of reliability can be defined as

Sx(·)(t) = S0

( t∫
0

r(x(s))ds
)
, (5)

where S0(t) = 1 − F0(t) is the baseline reliability function; r(·) is a non-negative function of stresses. In
applications, the most frequently used model functions of stresses are as follows:

— the log-linear model r(x) = eβ0 + β1x is used, for example, to analyze fatigue data in testing different
electronic components;

— the power rule model r(x) = eβ0 + β1 ln x is used in cases where the stress is voltage or mechanical
loads;

— the Arrhenius model r(x) = eβ0 + β1/x is used when the stress is, for example, temperature;
— the model r(x) = eβ0 + β1x1 + ... + βmxm is used in the case of multi-dimensional stresses (m is the

dimension of the stress vector).
In the case of a step stress where the test plan is given by relation (3), the reliability function of the

object observed under a stress xi is given by [5]

Sxi(t) = S0

(
r(xi,β)(t− ti) +

i∑
j = 1

r(xj ,β)(tj − tj − 1)
)
. (6)

In parametric AFT models, it is assumed that the baseline reliability function S0(t) = 1−F0(t) is defined
by some parametric family of distributions F0(t;θ). As the baseline laws the following distributions are
frequently accepted:

f0(t,θ) =
1
θ0

exp
(
− t

θ0

)
— the exponential distribution;

f0(t,θ) =
1

tθ1
√

2π
exp

(
− 1

2

( 1
θ1

ln
( t

θ0

))2)
— the lognormal distribution;

f0(t,θ) =
θ1

t

( t

θ0

)θ1
exp

(
−

( t

θ0

)θ1
)

— the Weibull distribution;

f0(t,θ) =
θ1

tθ0

( t

θ0

)θ1
(
1 +

( t

θ0

)θ1
)1/θ2 − 1

exp
(
1−

(
1 +

( t

θ0

)θ1
)1/θ2

)
— the generalized Weibull distribution;
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f0(t,θ) =
1

θ0Γ(θ1)

( t

θ0

)θ1 − 1
exp

(
− t

θ0

)
— the gamma distribution, and others.

Maximum likelihood estimates of the unknown parameters of an AFT model from a censored sample
Xn = {(X1, δ1,x1), . . . , (Xn, δn,xn)} can be obtained by maximizing the log-likelihood function

lnL(Xn;β,θ) =
n∑

i = 1

(δi ln fx(·)(Xi) + (1− δi)Sx(·)(Xi)) (7)

for the parameters β and θ.
In expression (7), the density f(t) is obtained from the baseline density f0(t,θ) in which the scale

parameter θ0 is replaced by a quantity inversely proportional to the function of the stress 1/r(x).

VALIDATION OF PARAMETRIC AFT MODELS

The validity of constructed parametric AFT models is usually tested by analyzing a sample of residuals
which are calculated as follows:

Zi = Xir(xi, β̂), i = 1, n, (8)

for the case of time-independent stresses and

Zi = r(xi
q, β̂)(Xi − ti− 1) +

q∑
j = 1

r(xi
j , β̂)(tj − tj − 1), i = 1, n, (9)

for a step stress of the form (3), where xi
q is the stress value at which the observation Xi was recorded.

If the data are well described by the constructed model, the residuals should fit the baseline distribution
of failures F0(t; θ̂), where θ̂ is the obtained estimate of the parameter vector standardized by the scale
parameter (at a scale parameter θ0 = 1).

The hypothesis that the residual sample fits the distribution F0(t; θ̂) can be verified using different
goodness-of-fit tests, whose use in this situation involves the following problems. First, measurements are
usually censored, which affects the properties of estimates [11, 12] and the possibility of using specific
goodness-of-fit tests [25]. Second, the tested hypothesis is composite since the parameters of the model were
already evaluated from the test results and the same results are now to be used to test the hypothesis.

In tests of composite hypotheses, where unknown parameters are estimated from the same sample, non-
parametric goodness-of-fit criteria are no longer independent of the distribution. In this case, the distri-
butions G(S |H0) of the statistics S of nonparametric goodness-of-fit criteria for testing the hypothesis H0

depend on several factors:
— the form of the baseline failure distribution F0(t;θ); — the type and number of the parameters

estimated from the sample; — the method of estimating the parameters; — and possibly, the value of the
shape parameter (for example, the shape parameter of the gamma distribution [17] or the generalized Weibull
distribution [20]).

Model distributions of the nonparametric Kolmogorov, Cramer–von Mises–Smirnov, and Anderson–
Darling goodness-of-fit statistics for testing composite hypotheses using MLE for different combinations
of parameters in the case of complete samples (non-censored observations) are presented in [17–24].

The hypothesis that a residual sample fits a distribution F0(t; θ̂) in the presence of censored measure-
ments can be tested using modifications of Kolmogorov, Cramer–von Mises–Smirnov, and Anderson–Darling
goodness-of-fit tests in which the statistics are expressed using the nonparametric Kaplan–Meier estimate,
and not an empirical distribution function [26].

We denote by a1 < a2 < . . . < ak = τ , k ≤ n the values of the complete observations (Zi, δi = 1) in the
sample of residuals (Z1, δ1), (Z2, δ2), . . . , (Zn, δn). Then, the Kaplan–Meier estimate can be calculated by
the formula

F̂n(t) = 1−
∏

ai ≤ t

(1− di/ci), (10)

where di =
∑

Zj = ai

δj ; ci is the number observations for which Zj ≥ ai, j = 1, . . . , n.
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In the modified Kolmogorov test for censored samples, the distance between the empirical and theoretical
distributions is given by the quantity

Dn = sup
0≤ t≤ τ

∣∣∣F̂n(t)− F0(t;θ)
∣∣∣,

where F̂n(t) is the Kaplan–Meier estimate of the distribution function and F0(t;θ) is the theoretical distri-
bution function corresponding to the tested hypothesis.

In order to reduce the dependence of the distribution of the statistics on the sample size for small n in
the modified Kolmogorov test, it is appropriate to use the statistic with Bol’shev’s correction [27]:

SC
K =

6nDn + 1
6
√

n
, (11)

where Dn = max{D+
n , D−

n }; D+
n = max

i
{F̂n(ai)− F0(ai;θ)}; D−

n = max
i
{F0(ai;θ)− F̂n(ai− 1)}.

In the modified Cramer–von Mises–Smirnov test, the distance between the distributions is given by

ω2 =

τ∫
0

(F̂n(t)− F0(t;θ))2dF0(t;θ).

The statistic of this test with the Kaplan–Meier estimate becomes

SC
ω =

n

3
F0(a1;θ) + n

k− 1∑
j = 1

[
F̂ 2

n(aj)(F0(aj +1;θ)− F0(aj ;θ))−

− F̂n(aj)(F 2
0 (aj +1;θ)− F 2

0 (aj ;θ)) +
1
3
(F 3

0 (aj + 1;θ)− F 3
0 (aj ;θ))

]
. (12)

In the modified Anderson–Darling test, the measure of the distance is taken as

Ω2 =

τ∫
0

(F̂n(t)− F0(t;θ))2
dF0(t;θ)

F0(t;θ)(1− F0(t;θ))
,

and, accordingly, the test statistic has the form

SC
Ω = n

{
− F0(a1;θ) +

k− 1∑
j =1

[
F0(aj ;θ)− F0(aj + 1;θ) + F̂ 2

n(aj)(lnF0(aj +1;θ)− lnF0(aj ;θ))−

− (1− F̂n(aj))2(ln(1− F0(aj + 1;θ))− ln(1− F0(aj ;θ)))
]
− ln(1− F0(a1;θ))

}
. (13)

In order to apply the goodness-of-test tests, it is necessary, with the validity of the tested hypothesis,
to know the distributions of the statistics of these tests that correspond to the plan and results of the
test, the baseline distribution, and the type and degree of censoring. Distributions of the test statistics or
percentage points required to test the hypothesis can be obtained using the approach of [17–24] based on
computer technology and statistical modeling. It is clear that the presence of the above factors influencing
the distribution of the statistics of the above-mentioned tests does not allow one to construct distributions
of statistics that correspond to specific test conditions. The actual test results and the values of the factors
affecting the distributions G(S |H0) of the goodness-of-fit test statistics S, with the validity of the tested
hypothesis H0, become known only after the construction of an AFT model. After that, computer simulation
is used to construct an empirical distribution of the statistic (or even an approximate distribution model),
from which it is possible to calculate the attained level of significance and decide on the validity of the
model. This interactive algorithm for simulating distributions of goodness-of-fit test statistics provides a
correct validation of the constructed model.
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INTERACTIVE ALGORITHM FOR SIMULATING TEST STATISTIC DISTRIBUTIONS

The procedure for modeling (studying) the statistic distribution G(S |H0) of a test used is as follows.
1. Simulate a complete sample of failures (X1, δ1 = 1,x1), . . . , (Xn, δ1 = 1,xn) in accordance with the

tested model Fx(t; β̂, θ̂), where β̂ and θ̂ is the MLE of the model parameters from the original sample. The
failure time of the object under a constant stress xi is modeled according to the equation

X = F−1
0 (y, θ̂)/r(xi, β̂), (14)

where y is a pseudo-random variable uniformly distributed on the interval [0, 1].
The time of failure of an object under a step stress (3) is modeled as follows. The stress xi is de-

termined from the condition that the value of y falls into the interval (bi− 1, bi], i = 1, l, where b0 = 0,

bi = F0

( i∑
j =0

r(xj , β̂)(tj + 1 − tj)
)
, bl = 1. If i = 1, the failure time is calculated in accordance with (14).

Otherwise,

X = ti− 1 +
[
F−1

0 (y, θ̂)−
i∑

j =1

r(xj − 1, β̂)(tj − tj − 1)
]/

r(xi, β̂). (15)

2. Convert (if necessary) the complete sample into a censored sample in accordance with the specified
censoring scheme: (X1, δ1,x1), . . . , (Xn, δn,xn).

3. Determine the MLE of the parameters β and θ from the sample (X1, δ1,x1), . . . , (Xn, δn,xn).
4. Calculate the residuals for the tested model (using (8) or (9)).
5. Determine the test statistic value from the sample of residuals (using (11), (12) or (13)).
6. Repeat steps 1–5 N times to obtain the empirical distribution of the statistic GN (Sn |H0).
The choice of N depends on the desired accuracy of modeling (for more details of the choice of N see [24]).
Based on the study of the problems associated with the use of the modified goodness-of-fit tests for the

analysis of residual samples, an interactive algorithm for validating parametric AFT models was proposed,
whose block diagram is shown in Fig. 1.

The proposed algorithms for modeling distributions of goodness-of fit test statistics for parametric AFT
models based on samples of residuals were implemented in LiTiS software system of statistical survival
analysis [28]. This system allows one to calculate MLEs of AFT model parameters for a wide range of
baseline distributions and different stress functions, to correctly validate the constructed AFT models using
modified goodness-of-fit tests, and to model the distributions of estimates and goodness-of-fit test statistics
for the given AFT models and test plans.

DISTRIBUTIONS OF THE TEST STATISTICS
IN THE CASE OF TIME-INDEPENDENT STRESSES

The present studies have shown, as expected, that in the case of complete data, where the relations
for statistics (11)–(13) coincide with the classical ones, the distributions G(Sn |H0) of the tests considered
are independent of the form of the function at stress r(·). Thus, to test the hypothesis that the sample of
residuals fits a distribution F0(t; θ̂) (to validate parametric AFT models) using the modified goodness-of-fit
tests, one can use the limiting distributions of statistics G(Sn |H0) presented in [17–23], and more fully
in [24]. Results of statistical simulations have confirmed that even with small samples of residuals, the
distributions of nonparametric test statistics coincide with approximations of distributions of these statistics
obtained for models without covariates [17–24].

In the case of censored data, the distributions of statistics depend on both the degree and type of censoring.
An important factor is the censoring scheme. For example, time limitation (type I censoring) or a limitation
of the number of failures (type II censoring) can be specified identically for all n objects, or differently for
each group of objects. In the latter case, the sample of residuals is a repeatedly censored sample.
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No Yes

NoYes

Calculation of test statistics by (11), (12) or (13)

Generation of a sample of residuals by (8) or (9)

Calculation of MLE  

Does the stress
depend on time?

Calculation of the attained significance level 

of the test an = PfSn > Sn* jH0g = 1 _ G-1(Sn* jH0).
The hypothesis H0 is accepted if an > a,

otherwise the hypothesis H0 is rejected

Are the data
complete?

The distributions obtained in [24]
for complete data without covariates
can be used as the distributions

of the statistics G(Sn jH0) 

Modeling the distributions
of the statistics G(Sn jH0)

using the algorithm presented above

^

Fig. 1. Block diagram of the algorithm for testing the goodness-of-fit hypothesis for a parametric
AFT model based on samples of residuals.

DISTRIBUTIONS OF TEST STATISTICS
IN THE CASE OF STEP-STRESS LOADING

If objects were observed under step stress (3), distributions of statistics obtained on the basis of the
samples of residuals (9) can differ significantly from distributions of statistics at stresses constant in time.
As an example, Fig. 2 presents empirical distributions of Kolmogorov’s statistic in testing the composite
goodness-of-fit hypothesis for the Weibull parametric AFT model for the following two test plans.

1. Constant-stress test plan: all objects are divided into two groups with stresses x1 = 1 and x2 = 2 with
n1 = 20 and n2 = 20 observations in each group.

2. Step-stress test plan: all n = 40 observations were modeled under a stress

x(t) =

{
x1 = 1, 0 < t ≤ 1,

x2 = 2, t > 1.

The log-linear model of the stress function r(x) = eβ0 + β1x was considered. The true values of the AFT
model parameters are as follows: β0 = −1, β1 = 1, and the baseline distribution shape parameter θ1 = 1.
The parameters β0, β1, and θ1 were estimated using the maximum likelihood method. The number of
simulated samples was N = 5000. For comparison, the figure shows the approximation obtained in [18] for
the limiting distribution of Kolmogorov’s statistic in testing the composite goodness-of-fit hypothesis for a

OPTOELECTRONICS, INSTRUMENTATION AND DATA PROCESSING Vol. 48 No. 6 2012



USING NONPARAMETRIC GOODNESS-OF-FIT TESTS 587

G(Sn jH0)
under constant stress

G(Sn jH0)under
step stress

G(Sn jH0)

Sn

Ã(6.6012, 0.0563, 0.2598)

0.2 0.4 0.6 0.8 1.0 1.2
0

0.2

0.4

0.6

0.8

1.0

Fig. 2. Distribution of Kolmogorov’s statistic for different test plans.

Weibull distribution for data without covariates (a gamma distribution with a bias parameter of 0.2598, a
scale parameter of 0.0563, and a shape parameter of 6.6012).

As seen in Fig. 2, even in the case of complete data, the distribution of the goodness-of-fit test statistics
for time-dependent covariates is significantly different from the approximation of the limiting distribution
of the statistic. Thus, unlike in the case of time-constant stresses, in tests of parametric AFT models with
time-dependent covariates, it is incorrect to use the test statistic distribution models constructed in [24]
to calculate the attained significance level. Here distributions of statistics can be obtained by statistical
modeling using the algorithm presented above.

CHOICE OF THE BASELINE RELIABILITY FUNCTION

In the construction of parametric models of reliability functions, including models with covariates and
AFT models, one of the key problems is the choice of the baseline distribution or a family of distributions. In
practice, as a rule, a priori information is not sufficient for an unambiguous choice of the baseline distribution
or a family of distributions.

As a measure of the preference of a particular baseline probability distribution F0(x;θ), it is possible to
use the attained significance levels obtained in test of the hypotheses that the sample of residuals fits the
baseline distribution F0(x; θ̂) using goodness-of-fit tests.

Example 1. We illustrate this with the example of choosing the baseline distribution function for
the problem of constructing the reliability function of electrical insulating liquids for which the results of
accelerated failure tests are presented in [2]. In the tests, all objects were divided into seven groups. Within
each group, the objects were observed under a constant high voltage of 26 kV to 38. The purpose of the
accelerated tests was to evaluate the reliability function of the insulating liquids under a normal voltage of
20 kV. Note that all these tests ended in failure of the test object; therefore, the failure data are complete
(no censored observations) (Table 1). It should be noted that the time from the beginning of a test to
failure significantly reduces with increasing voltage; ni indicates the number of tests carried out under the
corresponding load.

The stress function is selected in the same form as in [2]: r(x) = eβ0 + β1 ln x. The following possible base-
line distributions were considered : the exponential, Weibull, generalized Weibull, and gamma distributions.

Since the data are complete (censored measurements are absent), the models of [17–24] can be taken as
the limiting distributions of the statistics of the modified goodness-of-fit tests .

Table 2 presents the obtained estimates of the parameters of the models, a 95% confidence interval for
the estimates of the model parameters, and values of the log-likelihood function.

Table 3 shows the calculated values of the goodness-of-fit test statistics and the attained significance
levels.

OPTOELECTRONICS, INSTRUMENTATION AND DATA PROCESSING Vol. 48 No. 6 2012
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Table 1. Test plans and failure times

Voltage, kV ni Failure time, min

26 3 5.79, 1579.52, 2323.7

28 5 68.85, 426.07, 110.29, 108.29, 1067.6

30 11 17.05, 22.66, 21.02, 175.88, 139.07, 144.12, 20.46,
43.40, 194.90, 47.30, 7.74

32 15 0.40, 82.85, 9.88, 89.29, 215.10, 2.75, 0.79, 15.93, 3.91,
0.27, 0.69, 100.58, 27.80, 13.95, 53.24

34 19 0.96, 4.15, 0.19, 0.78, 8.01, 31.75, 7.35, 6.50, 8.27, 33.91, 32.52,
3.16, 4.85, 2.78, 4.67, 1.31, 12.06, 36.71, 72.89

36 15 1.97, 0.59, 2.58, 1.69, 2.71, 25.50, 0.35, 0.99,
3.99, 3.67, 2.07, 0.96, 5.35, 2.90, 13.77

38 8 0.47, 0.73, 1.40, 0.74, 0.39, 1.13, 0.09, 2.38

Table 2. Parameter estimates and confidence intervals

Baseline Law Estimates Confidence interval ln L

Exponential
β̂0 = −64.1303 −64.17 −64.10 −305.55
β̂1 = 17.481 17.47 17.49

Weibull

β̂0 = −63.8973 −63.98 −63.81

−300.83β̂1 = 17.457 17.43 17.48

θ̂1 = 0.7762 0.74 0.82

Gamma

β̂0 = −64.3374 −64.42 −64.26

−301.61β̂1 = 17.434 17.41 17.46

θ̂1 = 0.6923 0.65 0.73

Generalized Weibull

β̂0 = −62.8442 −62.98 −62.72

−300.47β̂1 = 17.402 17.36 17.44

θ̂1 = 0.9238 0.87 0.98

θ̂2 = 1.6220 1.53 1.72

Table 3. Results of testing the hypothesis that the sample of residuals fits

the baseline distributions of failures

Baseline Law

Criterion

Kolmogorov Cramer–von Mises–
Smirnov

Anderson–Darling

S∗
n P{Sn > S∗

n} S∗
n P{Sn > S∗

n} S∗
n P{Sn > S∗

n}
Exponential 1.46 0.00 0.51 0.00 2.95 0.00

Weibull 0.67 0.33 0.06 0.29 0.39 0.38

Gamma 0.86 0.10 0.11 0.09 0.62 0.12

Generalized Weibull 0.55 0.76 0.04 0.71 0.28 0.70
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Table 4. Test plans and failure times

Temperature, ◦C Failure times, h

150 10 censored at the time 8064

170 1764, 2772, 3444, 3542, 3780, 4860, 5196
3 censored at the time 5448

190 408, 408, 1344, 1344, 1440
5 censored at the time 1680

220 408, 408, 504, 504, 504
5 censored at the time 528

Table 5. Baseline distribution models

Baseline distribution Estimates Confidence interval ln L

Exponential
β̂0 = 15.2813 15.20 15.36

−155.3647
β̂1 = −10.8408 −10.88 −10.81

Weibull

β̂0 = 12.9681 12.92 13.02

−146.2894β̂1 = −9.5471 −9.57 −9.53

θ̂1 = 3.0867 2.76 3.44

Gamma

β̂0 = 14.5602 14.50 1462

−147.3728β̂1 = −9.5845 −9.61 −9.56

θ̂1 = 4.4626 4.26 4.68

Generalized Weibull

β̂0 = 10.5386 10.43 10.57

−145.8709β̂1 = −9.6778 −9.73 −9.66

θ̂1 = 2.6329 2.60 2.73

θ̂2 = 0.0010 0.00 0.0013

Lognormal

β̂0 = 13.2782 13.21 13.34

−148.5752β̂1 = −9.6591 9.63 9.69

θ̂1 = 0.5927 0.54 0.65

Because in this example, there were no censored measurements, in the tests and selection of the most
appropriate AFT model, the results of [17–24] were used as the distributions of the goodness-of-fit test
statistics. As is evident in Table 3, at a significance level α ≤ 0.09, the goodness-of-fit hypothesis is not
rejected for all models, except for the model constructed on the basis of the exponential law. However, for
the AFT model constructed on the basis of the generalized Weibull distribution, the attained significance
levels for all tests are much higher. Therefore, this model is the preferred over all the baseline distributions
considered.

Example 2. As an example of selection of the model from censored measurements, we consider data on
engine failure. The test plan and failure data are given in [29], and their analysis is given in [30, 3].

In this present study, the objects were divided into four groups, each of which was observed under
increased temperature. The test time was limited for each group. Failure was observed for 17 of the
observed 40 objects. The purpose of the study was to estimate the reliability of the objects under normal
operating conditions — at a temperature of 130 ◦C. Table 4 shows the increased stress-load values for each
of the groups and the failure times.

As in [3], the stress function was the log-linear model r(z(x)) = eβ0 + β1z(x), where the load value (in
Celsius degrees) is recalculated according to the relation z(x) = 1000/(273.2 + x).

Table 5 shows the obtained estimates, the 95% confidence interval, and the values of the likelihood
function for different parametric AFT models.

The values of ln L for the considered AFT models suggest that the models based on the baseline laws
of the Weibull distribution and the generalized Weibull are preferred. To determine the most suitable AFT
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Table 6. Results of testing of the hypothesis that the sample of residuals fits the baseline distribution

Baseline distribution

Criterion

Kolmogorov Cramer–von Mises–Smirnov Anderson–Darling

S∗
n P{Sn > S∗

n} S∗
n P{Sn > S∗

n} S∗
n P{Sn > S∗

n}
Weibull 1.64 0.48 0.36 0.48 1.93 0.46

Generalized Weibull 1.63 0.42 0.35 0.41 1.90 0.40

model, using nonparametric goodness-of-fit tests, we tested the hypothesis that samples of residuals fit
the corresponding baseline law. The distributions of the statistics of the tests used to test the composite
hypotheses relative to the laws considered (with the degree of censoring available in this case) are unknown,
but they are needed to draw the final conclusion. We emphasize that in testing composite hypotheses relative
to the generalized Weibull distribution, the distributions of the statistics of the corresponding goodness-of-fit
tests G(Sn |H0) depend on the value of the parameter θ2 of this distribution.

Since the experiment described here involved type I censoring, to find the empirical distribu-
tions G(Sn |H0) of the statistics (11)–(13) of the modified nonparametric Kolmogorov, Cramer–von Mises–
Smirnov and Anderson–Darling goodness-of-fit tests, we used a computer simulation technique [31] and the
above algorithm for modeling the distributions of statistics of the goodness-of-fit tests applied to the analysis
of AFT models. Empirical distributions of the statistics were modeled in accordance with the test conditions
specified in Table 4 (loads, censoring times, and the number of groups and the number of objects in the
group with n = 40). Then, the attained significance levels G(Sn |H0) were determined from the constructed
distributions P{Sn > S∗n} of the statistics and the values of the goodness-of-fit statistics S∗n calculated from
samples of residuals.

The resulting values of the goodness-of-fit test statistics S∗n and the attained significance levels P{Sn >
S∗n} are given in Table 6. We see that in both cases, the tested hypothesis is not rejected, but for the model
constructed using the Weibull distribution, the attained significance levels are somewhat higher. Thus,
based on the tests of the hypotheses, preference is given to the simpler AFT model of the reliability function
constructed using the Weibull distribution as the baseline failure law. At the same time, the values of the
test statistic show that, in this case, the AFT model obtained with the choice of the generalized Weibull
distribution as the baseline law, which has the shape parameter, is closer to the Kaplan–Meier estimate
calculated from the results of tests and which is an analog of an empirical distribution function.

Survival and reliability problems often involve type III censoring, in which the censoring times are inde-
pendent random variables. Problems encountered in the construction and validation of AFT models with
random censoring are more complicated and less well studied. A fundamental difficulty is that, as a rule,
there is no information on the distribution of the censoring times. In the present work, we confined ourselves
to the results for complete samples and samples with types I and II censoring; the problems associated with
the validation of AFT models with random censoring of test results will be considered in the future.

CONCLUSIONS

In the present paper, we considered the construction of accelerated failure test models for the most
commonly used distribution functions of different loads used in reliability and survival analysis.

The usefulness of a constructed AFT model is determined by how exactly the predicted reliability function
obtained from the results of accelerated failure tests (at elevated loads) of test objects corresponds to the
unknown reliability function that characterizes the survival of objects under normal conditions.

The validity of constructed parametric AFT models can be judged from an analysis of the sample of
residuals. Decision on the validity of the model can be made from the results of testing the hypothesis that
the sample of residuals fits the baseline distribution law. This is done using the modified nonparametric
goodness-of-fit tests.

In the case of complete data (in the absence of censored observations) and at loads constant in time,
the models constructed in [17–24] for the classical tests for composite hypotheses are used as the as limiting
distributions of the statistics of the modified Kolmogorov, Cramer–von Mises–Smirnov, and Anderson–
Darling tests,

In the presence of I or II type censored observations, the required distributions of the statistics of the
modified goodness-of-fit tests can be obtained without major difficulties by statistical modeling.

OPTOELECTRONICS, INSTRUMENTATION AND DATA PROCESSING Vol. 48 No. 6 2012



USING NONPARAMETRIC GOODNESS-OF-FIT TESTS 591

It is shown that the best baseline law and, hence, the best AFT model of the models considered can be
selected by consistently analyzing the sample of residuals corresponding to some set of baseline probability
distributions and determining the maximum attained significance level for the goodness-of-fit tests.

This work was supported by the Ministry of Education and Science of the Russian Federation
(Grant No. 8.1274.2011) and the Federal target program “Scientific and scientific-pedagogical personnel
of innovative Russia.”
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