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Abstract

In the paper some statistical tests intended for testing of uniformity have
been considered. Distributions of test statistics, the power of tests under dif-
ferent competing hypotheses have been studied. Considered tests have been
ranked by the test power. Advantages and disadvantages of individual tests
have been shown. Also, it has been shown that the large part of the tests
traditionally used for testing uniformity has the bias under some kind of com-
peting hypotheses. It is underlines that special uniformity tests haven't clear
advantage over nonparametric goodness-of-�t tests used for testing uniformity
in general.

Keywords: uniform distribution, hypothesis testing, test statistic, test
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Introduction

The uniform distribution is one of common distributions in applied mathematics
statistics and probability theory. It is often used to describe the measurement er-
ror of some instruments or measuring systems. Simulation of pseudorandom values
according to di�erent parametric laws relies on sensors of uniform pseudorandom
values. Parametric laws are urgently needed in the systems of statistical simulation.
Testing the uniformity actually represents goodness-of-�t testing the hypothesis of
uniform distribution of the observed sample x1, ..., xn. In some papers, the authors
states that testing composite hypothesis can be reduced to test simple hypothesis
of uniformity on the interval [0, 1], because if x1, ..., xn belong law with probability
distribution function F (x), then random variable yi = F (xi) is uniformly distributed
on unit interval. All of these factors explain the increasing interest in the choice
of simple and computationally e�cient procedures for testing hypotheses about the
uniform law of analyzed samples.

The various statistical tests used for testing hypothesis of uniformity can be di-
vided into two subsets. These are common goodness-of-�t tests applicable for testing
of uniformity and special tests oriented on testing hypothesis that sample x1, ..., xn
is uniform distributed.

The presence of numerous tests put not simple problem of choosing for specialists,
because available information in papers doesn't allows to give preference to certain
test, while every specialist is interested not only in correctness of using of tests, but
else in reliability of statistical inferences.

1This work is supported by the Russian Ministry of Education and Science (project 2.541.2014K).
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In this paper, a lot of considered tests are studied by the method of statistical
simulations. The number of experiments carried out for statistical modeling is as-
sumed equal to 1 660 000 in the study of the distributions of test statistics. On the
one hand, such number of experiments allows tracing the qualitative picture of test
statistic distributions in depend on various factors. On the other hand, this number
of experiments provides acceptable accuracy of the power estimates and unknown
probabilities.

1 The statement of testing uniformity

In the most of uniformity tests, ordered statistics of quantityX are used (x(1) < x(2) <
... < x(n) are elements x(i) of variation series of the sample). Further designation
Ui = x(i), i = 1, n will be used in expressions of statistical tests.

As usually tests are oriented on testing of simple hypothesis H0 on interval [0, 1].
However, if hypothesis of uniformity is tested on interval [a, b] then elements x(i)

of variation series a < x(1) < x(2) < ... < x(n) < b are modi�ed to corresponding

(required in the tests) ordered statistics as: Ui =
x(i)−a
b−a , i = 1, n.

To test composite hypothesis of uniformity H0: F (x) = (x− a)/(b− a), x ∈ [a, b],
where a and b are non-known, we proceed as follows. Using the variation series
x(1) < x(2) < ... < x(n) of sample X1, X2, ..., Xn the parameter estimates are obtained
as follows:

â = x(1) −
x(n) − x(1)

n− 1
, b̂ = x(n) +

x(n) − x(1)

n− 1
. (1)

It is obviously that testing of composite hypothesis of uniformity for sample
X1, X2, ..., Xn on interval [â, b̂] equal to testing of simple hypothesis of uniformity
for sample with sample size n− 2 on interval [x(1), x(n)]. The required values of order

statistics for testing such hypothesis obtained by expressions: Ui−1 =
x(i)−x(1)
x(n)−x(1)

,

i = 2, (n− 1).

A number of considered tests can be divided into three groups. The �rst group
has statistics based on interval between elements, in most of cases di�erences between
neighbor elements denoted as:

Di = Ui − Ui−1, (2)

where U0 = 0, Un+1 = 1, n is the size of the sample. In the second group test
statistics used di�erence between theoretical (expected) and empirical data. These
tests also called as tests based on the empirical distribution function (EDF tests),
and goodness-of-�t tests are contained in this group. The third group has statistics
based on entropy estimator. The third group includes the tests based on the entropy
estimator.
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2 Alternative hypotheses

We compared the power of tests for relatively sample size n = 10, 20, 30, 40, 50, 100,
150, 200, 300 . Empirical distributions of test statistics under either true null hypoth-
esis or competing hypotheses were found based on 1 660 000 simulations also. The
hypothesis under test H0 was chosen as uniform law. Alternative hypothesis Hi was
chosen as beta distribution with the density

f(x) =
1

θ2B(θ0, θ1)

(
x− θ3

θ2

)θ0−1(
1− x− θ3

θ2

)θ1−1

, (3)

where B(θ0, θ1) = Γ(θ0)Γ(θ1)/Γ(θ0 + θ1) is beta-function, θ0, θ1 ∈ (0,∞) are param-
eters the of form, θ2 ∈ (0,∞) is shape parameter, θ3 ∈ (−∞,∞) is bias parameter,
x ∈ [0,∞]. This distribution was chosen because the fact that the standard uniform
distribution is a special case of the beta distribution with the parameters of form
θ0 = 1 and θ1 = 1. We denote the function of beta distribution with values of param-
eters BI(θ0, θ1, θ2, θ3). So, three alternative hypotheses H1, H2, H3, which are quite
close to H0, can be written by

H1 : F (X) = BI(1.5, 1.5, 1, 0), x ∈ [0, 1];
H2 : F (X) = BI(0.8, 1.0, 1, 0), x ∈ [0, 1];
H3 : F (X) = BI(1.1, 0.9, 1, 0), x ∈ [0, 1] .

The distribution functions and the density functions of these hypotheses are presented
in Figure 1 and 2, respectively.

Figure 1: The distribution functions corresponding to the hypotheses

It is worth noting that the distribution function of alternative H1 crossed the
function of the uniform distribution, while the distribution functions of alternatives
H1 and H3 are located above and below the function of uniform distribution, respec-
tively. And abilities to distinguish hypothesis H0 from H1 and from H2 and H3 in
tests are di�erent. The comparative analysis shows that most of the considered tests
have inability to distinguish hypothesis H0 from H1 under small sample size n , in
other words these tests are biased in such cases.

94



Applied Methods of Statistical Analysis

Figure 2: The density functions corresponding to the hypotheses

3 Simulation result

The expressions for statistics of special uniformity tests are presented in Table 1. The
Table 2 contains considered tests ordered by decreasing of power (quantity 1 − β)
under alternatives H1, H2 and H3 (n = 100 and α = 0.1). The dark mark means that
the test is biased under small sample size n, in other words that quantity α larger
than 1− β. This bias take a place to a lesser extent in Neyman-Barton tests N2 and
N3 [14]. This advantage isn't observed only for some tests: Kuper test [9], Watson
test [19, 20], Dudewicz-Van Der Mulllen test [5], Cheng-Spiring test [3], Swartz
test [18], second Cressie [4] test and chi-squared Pearson test.

Entropy procedure used di�erent entropy estimator gives high power under alter-
native hypothesis H1. Whereas their power is relatively worst under alternatives H2

and H3. It should be noted that only modi�cations of entropy test have bias under
alternative H2 for small sample size n. It is recognized that power of these tests and
also Cressie tests and Pardo test [15] depends from choosing of parameter m called
as window size also.

The Neyman-Barton test N2 shows good power under H1 and relatively good
power under H2 and H3. The Hegazy-Green tests [7] and Frosini test demonstrate
consistently good ability to distinguish alternative hypotheses from uniformity distri-
bution. The low powers are shown by tests, the statistics of which use the di�erences
(2) of successive values of order sample Ui−Ui−1 (Sherman test [17], Kimball test [8],
Moran tests [12, 13], Greenwood test [6], Greenwood-Quesenberry-Miller test [16]).
The Cheng-Spiring test, demonstrated quite high power under H1, shows low power
under H2 and H3. The lowest power is demonstrated by Yang test [22], under all
considered alternative hypotheses. Among the non-parametric goodness-of-�t tests,
the good powers are obtained by Zhang tests ZA and ZC [24], and Anderson-Darling
tests [1].
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Conclusions

Unfortunately, the distributions of most special uniformity tests depend on the sample
size, therefore the researchers must rely on the tables of percent points. The similar
issue occurs in using nonparametric goodness-of-�t Zhang tests.

It is found from comparative analysis of tests, which can be used for testing the
hypothesis of uniformity, that using of single certain test can be incorrect in forming
the reliable statistical inference. The applying more than one test based on di�erent
measure of deviation of empirical distribution from theoretical distribution improves
the quality of statistical inference. It is better to use some series of tests, which have
certain advantages for more objective inferences.
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Table 1: Statistics of considered tests for uniformity

Number Test Test statistic

1 Sherman ωn = 1
2

n+1∑
i=1

|Di − 1
n+1 |

2 Kimball A =
n+1∑
i=1

(Di − 1
n+1 )2

3 Moran 1 B =
n+1∑
i=1

(Di)
2

4 Moran 2 Mn = −
n+1∑
i=1

ln [(n+ 1)Di)]

5 Yang M = 1
l

n∑
i=1

min(Di, Di+1); l = b− a

6 Greenwood G = (n+ 1)
n+1∑
i=1

(Di)
2

7 Greenwood-Qesenberry-Miller Q =
n+1∑
i=1

(Di)
2 +

n∑
i=1

(Di+1Di)

8 Swartz A∗n = n
2

n∑
i=1

(
Ui+1−Ui−1

2 − 1
n

)2
,

where U0 = −U1, Un+1 = 2− Un

9 Cressie 1 S
(m)
n =

n+1−m∑
i=0

(
Ui+m − Ui − m

n+1

)2
, m < n

2

10 Cressie 2 L
(m)
n =

n+1−m∑
i=0

ln[n+1
m (Ui+m − Ui)], m < n

2

11 Cheng-Spiring Wp =
[
(Un − U1)n+1

n−1

]2
/

n∑
i=1

(
Ui − Ū

)2
12 Hegazy-Green T1 T1 = 1

n

n∑
i=1

|Ui − i
n+1 |

13 Hegazy-Green T ∗1 T ∗1 = 1
n

n∑
i=1

|Ui − i−1
n−1 |

14 Hegazy-Green T2 T2 = 1
n

n∑
i=1

(
Ui − i

n+1

)2
15 Hegazy-Green T ∗2 T ∗2 = 1

n

n∑
i=1

(
Ui − i−1

n−1

)2
16 Frosini Bn = 1√

n

n∑
i=1

|Ui − i−0.5
n |

17 Neyman-Barton Nk; k = 2, 3, 4 Nk =
k∑
j=1

V 2
j , where Vj = 1√

n

n∑
i=1

πj(Ui − 0.5),

π1(y) = 2
√

3y; π2(y) =
√

5(6y2 − 0.5);

π3(y) =
√

7(20y3 − 3y);
π4(y) = 3(70y4 − 15y2 + 0.375)
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Table 1 (continued)

Number Test Test statistic

18 Dudewicz-Van Der Mulen H(m,n) = − 1
n

n∑
i=1

ln [ n2m (Ui+m − Ui−m)],

where m < n
2 ; if i+m ≥ n, then Ui+m = Un, and if

i−m ≤ 1, then Ui−m = U1

19 Pardo Em,n = 1
n

n∑
i=1

2m
n(Ui+m−Ui−m)

20 The �rst modi�cation of
entropy test [23],

HY1 = − 1
n

n∑
i=1

ln
(

Ui+m−Ui−m
F̂ (Ui+m)−F̂ (Ui−m)

)
, where

F̂ (Ui) = n−1
n(n+1)

(
i+ 1

n−1 + Ui−Ui−1

Ui+1−Ui−1

)
,

i = 2, (n− 1), F̂ (U1) = 1− F̂ (Un) = 1
n+1

21 The �rst modi�cation of
entropy test [21],

HY2 = −
n∑
i=1

ln
(

Ui+m−Ui−m
F̂ (Ui+m)−F̂ (Ui−m)

)

∗

 F̂ (Ui+m)−F̂ (Ui−m)
n∑
j=1

(F̂ (Uj+m)−F̂ (Uj−m))



Table 2: The tests ranked by power (n = 100,α = 0.1)

hypothesis H1 1− β hypothesis H2 1− β hypothesis H3 1− β
1 The second modi-

�cation of entropy
test

0.883 Anderson�Darling 0.648 Anderson�Darling 0.526

2 Zhang ZA 0.850 Hegazy-Green T1 0.610 Hegazy-Green T1 0.522

3 Neyman-Barton N2 0.837 Zhang ZC 0.606 Frosini 0.522

4 Cressie 2 0.820 Frosini 0.603 Hegazy-Green T ∗1 0.520

5 Zhang ZC 0.819 Hegazy-Green T2 0.602 Hegazy-Green T2 0.508

6 Dudewicz-Van Der
Mulen

0.790 Neyman-Barton N2 0.597 Kramer-von-
Misses-Smirnov

0.507

7 The �rst modi�ca-
tion of entropy test

0.789 Kramer-von-
Misses-Smirnov

0.595 Hegazy-Green T ∗2 0.506

8 Watson 0.779 Hegazy-Green T ∗1 0.595 Zhang ZC 0.463

9 Neyman-Barton N3 0.766 Zhang ZK 0.590 Zhang ZA 0.459

10 Neyman-Barton N4 0.739 Hegazy-Green T ∗2 0.585 Kolmogorov 0.450
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Table 2 (continued)

hypothesis H1 1− β hypothesis H2 1− β hypothesis H3 1− β
11 Kuper 0.736 Neyman-Barton N3 0.577 Neyman-Barton N2 0.447
12 Cheng-Spiring 0.722 Zhang ZA 0.574 Zhang ZK 0.438

13 Zhang ZK 0.617 Neyman-Barton N4 0.557 Neyman-Barton N3 0.416

14 Pearson χ2 0.593 Kolmogorov 0.542 Neyman-Barton N4 0.381
15 Swartz 0.583 Pardo 0.463 Pearson χ2 0.374

16 Anderson�Darling 0.505 Pearson χ2 0.448 Pardo 0.291

17 Hegazy-Green T ∗1 0.443 Kuper 0.364 Dudewicz-Van
Der Mulen

0.275

18 Hegazy-Green T ∗2 0.409 Watson 0.356 The �rst modi�-
cation of entropy
test

0.275

19 Pardo 0.408 The �rst modi�ca-

tion of entropy test

0.328 The second
modi�cation of
entropy test

0.267

20 Frosini 0.384 Dudewicz-Van Der

Mulen

0.327 Watson 0.257

21 Kramer-von-

Misses-Smirnov

0.358 Cressie 1 0.314 Kuper 0.254

22 Hegazy-Green T1 0.322 The second

modi�cation of

entropy test

0.266 Cressie 2 0.226

23 Kolmogorov 0.322 Greenwood-
Qesenberry-
Miller

0.244 Cressie 1 0.218

24 Hegazy-Green T2 0.308 Swartz 0.226 Swartz 0.206

25 Greenwood-

Qesenberry-Miller

0.290 Cressie 2 0.217 Greenwood-
Qesenberry-
Miller

0.186

26 Kimball 0.279 Sherman 0.204 Kimball 0.165

27 Moran 1 0.279 Kimball 0.201 Moran 1 0.165

28 Greenwood 0.279 Moran 1 0.201 Greenwood 0.165

29 Sherman 0.215 Greenwood 0.201 Sherman 0.154

30 Cressie 1 0.187 Moran 2 0.193 Moran 2 0.143

31 Moran 2 0.187 Cheng-Spiring 0.168 Cheng-Spiring 0.106

32 Yang 0.115 Yang 0.108 Yang 0.104
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