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Abstract – A wide selection of statistical tests for testing 

exponentiality is considered. The distributions of tests statistics 

under true null hypothesis have been studied depending on 

sample sizes. Comparative analysis of the power of tests under 

different pairs of competing hypotheses has been conducted. 

Advantages and disadvantages of individual tests have been 

shown. Considered tests have been ranked by the test power. 

The conclusions are made on preference of one test or another 

under presence of some competing alternatives. 

 
 Index terms – hypothesis testing, exponential distribution, 

power of test, order statistics. 

 

I. INTRODUCTION 

he exponential distribution law is one of common 

distribution in applied mathematics statistics. It is 

main distribution law used in reliability theory. Its 

analytical simplicity makes it attractive to engineers and 

researchers. However, you need to be sure, that behavior of 

observable random variable (for example, the moments of 

product failure (breakdown)) is consistent by desirable 

exponential distribution before using this model. Otherwise, 

the benefit from computation simplicity will be repeatedly 

reduced by losses from conclusion incorrectness caused by 

deviation of empirical distribution from exponential distribu-

tion law.  

There are a lot of papers devoted to exponential law; 

authors of these papers propose different statistical tests for 

testing hypothesis of exponentiality. The abundance of tests 

is caused by frequent use of exponential distribution model 

in applications. However, the frequency of using is defined 

that usage of simple model leads to the solution of problem 

grounded only on analytical methods in most cases.  

The presence of numerous tests put not simple problem of 

choosing for specialists, because available information in 

papers doesn’t allows to give preference to certain test, while 

every specialist is interested not only in correctness of using 

of tests, but else in reliability of statistical inferences.  

In this paper, considered tests have been studied by the 

method of statistical simulations. The number of experiments 

carried out for statistical modeling is usually assumed equal 

to 61.66 10N   in the study of the distributions of test 

statistics. One the one hand, such number of experiments 

allows tracing the qualitative picture of test statistic distribu-

tions in depend on various factors. In the other hand, this 

number of experiments provides acceptable accuracy of the 

power estimates and unknown probabilities. Computer 

analysis methods provide an opportunity to identify the 

advantages and disadvantages of a test, to assess the size of 

sample when the difference between distributions of test 

statistics under true tested hypothesis and the corresponding 

asymptotic (limiting) distributions of statistics is practically 

negligible. Also, these methods provide an opportunity to 

compare the relative powers of the different tests under 

various alternative hypotheses, and to identify the most 

preferable test. 

II. PROBLEM DEFINITION 

Let 1 2, ,..., nx x x be sample of independent observations of 

nonnegative random variable X . Belonging of sample to 

exponential distribution law with density function 

   expf x x 
 
was considered as tested hypothesis 0H .  

The set of tests constructed special for exponentiality 

testing can be used for testing hypothesis 0H  besides 

classical goodness-of-fit tests. It is quite difficult to divide 

the special test statistics into the groups due to multiplicity of 

its. It should be noted that elements of ordered samples 

     1 2
...

n
x x x   are used in calculation for part of test 

statistics. In another cases sequence order of elements 

doesn’t matter. Also, in some test statistics, we will use 

transformed values which use estimates of shift and scale or 

differences between elements of order samples.  

The exponential distribution has constant failure rate. In 

view of this the distribution laws, belonging to three classes: 

with increasing, decreasing and non-monotonic failure rate 

[1] were considered as alternatives hypotheses. 

The research was carried out for three alternative hypothe-

ses: 

1H  :  1LN  is lognormal distribution with density func-

tion     
1 2 2( ) 2 exp ln 2f x x x


      and scale 

parameter 1  as alternative hypothesis with non-

monotonic failure rate; 

2H  :  0.7W  is Weibull distribution with density func-

tion  1( ) expf x x x   , and form parameter 0.7  as 

alternative hypothesis with decreasing failure rate; 

T 
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3H  :  1.2W  – is Weibull distribution with form parame-

ter 1.2  as alternative hypothesis with increasing failure 

rate. 

The distribution functions and density functions corre-

sponding to tested and alternative hypotheses are presented 

on figures 1 and 2, respectively.  

 
Fig. 1 – The distribution functions of hypotheses 

 
Fig. 2 – The density functions of hypotheses 

III. CONSIDERED TESTS 

A. Bartlett-Moran test 

The Bartlett papers [2] are base for given test. The test 

statistic is: 

2

1 1

12 1 1
ln ln .

7 1 i i

n n

i i

n
B x x

n n n 

  
   

    
    (1) 

The distributions of the test statistic (1) of Bartlett-Moran 

test under 0H and alternatives 1 3H H  for sample size 

50n  present on fig.3. You can see that this test is two-

sided because distributions of test statistic under alternatives 

are offset in both directions from distribution of null hypoth-

esis.  

In [3] it is shown, that the distribution of test statistic is 

approximated by 
2  distribution with  1n degrees of 

freedom. The distributions of the test statistic of Bartlett-

Moran test for 100n   and some 
2  distributions are 

shown in fig.4. 

 
Fig. 3 – The distribution of test statistic (1) under 0 3H H   for 50n 

 

 

Fig. 4 – The distribution of test statistic (1) and 2  distributions 

B. Frosini Test 

The test statistic is [4]: 

1

1 0,5
1 exp .

n
i

n
i

x i
B

x nn 

 
    

 
   (2) 

The hypothesis under test is rejected for large values of the 

statistic. Critical values of the test statistic obtained by our 

simulation are presented in Table I. These values do not 

change for n , it indicates the presence of the limit 

distribution.  This test has likeness to Frosini test for uni-

formity [5]; however critical values and limit distribution of 

(2) differ from ones of uniformity test. 

 

TABLE I 
CRITICAL VALUES OF FROCINI TEST STATISTIC (2) 

n  
α 

n  
α 

0.9 0.95 0.99 0.9 0.95 0.99 

5 0.326 0.367 0.445 30 0.338 0.383 0.476 

6 0.327 0.370 0.455 35 0.338 0.384 0.477 

7 0.329 0.373 0.459 40 0.338 0.384 0.477 

8 0.331 0.375 0.462 50 0.339 0.384 0.478 

9 0.333 0.377 0.464 100 0.340 0.385 0.480 

10 0.333 0.377 0.466 150 0.340 0.385 0.480 

15 0.336 0.380 0.472 200 0.340 0.3855 0.480 

20 0.337 0.3815 0.474 300 0.340 0.386 0.480 

25 0.338 0.383 0.4755 500 0.340 0.3855 0.481 



2018  14th International Scientific-Technical Conference APEIE – 44894 

27 

 

C. Pietra test 

This test named different in some papers. In [6, 7, 8] test 

called Pietra test, but in [3] it called as Sherman 

exponentiality test. The test statistic is 

11
.

2

n

i
i

n

x x

P
n x









   (3) 

The critical values of test statistics (3) equal to ones of 

Sherman uniformity test [2, 10] in the opinion of some works 

[2]. It is true for large sample sizes, however for small 

sample sizes it is necessary to replace n  by 1n   in (3). The 

distribution of Pietra test statistic (3) and distribution of 

Sherman uniformity test denoted by n  are present on fig.5. 

The critical values of test statistic (3) are shown in Table II. 

 
Fig. 5 – The distributions of Pietra test statistic (3) and Sherman uniformi-

ty test statistic 

Pietra test is two-sided. The distributions of the test statis-

tic (3) of Pietra test under 0H and alternatives 1 3H H  for 

sample size 50n  present on fig.6.  

 

Fig. 6 – The distribution of test statistic (3) under 0 3H H   for 50n 
 

There are two normal approximations for Sherman uni-

formity test, which can be used to Pietra test because 

distributions of these tests quite close.  

The test statistic of first is: 

 
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You can see closeness of distribution of test statistic (4) for 

100n   to standard normal distribution law in fig.7.  

 

TABLE II 
CRITICAL VALUES OF PIETRA TEST STATISTIC (3) 

n  

α 

0.9 0.95 0.99 

,1Pn  ,2Pn  ,1Pn  ,2Pn  ,1Pn  ,2Pn  

5 0.163 0.509 0.138 0.544 0.092 0.622 

10 0.228 0.478 0.208 0.504 0.170 0.555 

15 0.256 0.460 0.238 0.481 0.205 0.523 

20 0.272 0.449 0.256 0.468 0.227 0.503 

30 0.290 0.436 0.277 0.450 0.253 0.479 

40 0.301 0.427 0.290 0.440 0.268 0.465 

50 0.308 0.421 0.298 0.433 0.278 0.455 

100 0.326 0.406 0.319 0.414 0.305 0.430 

150 0.334 0.400 0.328 0.406 0.316 0.419 

200 0.339 0.395 0.334 0.401 0.323 0.412 

300 0.344 0.390 0.340 0.395 0.332 0.404 

 

 

Fig. 7 – The distribution of test statistic (4) and normal distribution 

Another normal approximation [9] is described by formu-

las: 

 20,0995
1 ;n U U

n
   

   (5) 

where 

1
0,3679 1

2
.

0,2431 0,605
1

nP
n

U

nn

 
  

 


 
 

 
 

The distribution of this modified test statistic (5) faster 

converges to the standard normal distribution than the 

distribution of test statistic (4). The convergence of distribu-
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tion of test statistic (5) to the standard normal distribution 

law is shown on fig.8. 

 
Fig. 8 – The distribution of test statistic (5) and normal distribution 

D. Kochar test 

The statistic of test is [10]: 

1
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1108
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


       (6) 

 

where 

1 1
2 1 ln 1.

1 1 1

i n i n i
J

n n n

          
        

        
 

The research shows that Kochar test is two-sided. Figure 9 

containing the distributions of the test statistic (6) of Kochar 

test under 0H and alternatives for sample size 50n  con-

firms that statement. The critical values of Kochar test are 

demonstrated in Table III. 

 
Fig. 9 – The distribution of test statistic (6) under 0 3H H   for 50n 

 

E. Lawless test 

The test [11] constructed for exponentiality testing against 

gamma-distribution alternatives based on test statistic: 

,
x

W
x


       (7) 

where 
1

1 n

i
i

x x
n 

  and  

1

1

n n

i
i

x x


 
  
 
 — arithmetic mean and 

geometric mean of  sample 1 2, ,..., nx x x , respectively. 

This test is two-sided; the hypothesis of exponentiality is 

rejected for both small and large values of test statistic. The 

critical values of test statistic (7) are presented in Table IV. 

It is worth nothing that test statistic (7) is generalization of 

test statistic (1) of Bartlett-Moran test. The powers of both 

tests are identical for all considered situations in own 

research. 

TABLE III 
CRITICAL VALUES OF KOCHAR TEST STATISTIC (6) 

n  

α 

0.9 0.95 0.99 

,1Pn  ,2Pn  ,1Pn  ,2Pn  ,1Pn  ,2Pn  

5 0.750 2.486 0.568 2.606 0.251 2.814 

10 0.175 2.490 -0.078 2.664 -0.574 2.976 

15 -0.129 2.443 -0.413 2.644 -0.971 3.013 

20 -0.326 2.396 -0.622 2.615 -1.208 3.023 

25 -0.464 2.356 -0.767 2.588 -1.375 3.018 

30 -0.564 2.322 -0.876 2.559 -1.498 3.009 

40 -0.714 2.266 -1.031 2.517 -1.667 2.985 

50 -0.814 2.218 -1.134 2.479 -1.771 2.972 

100 -1.066 2.087 -1.393 2.365 -2.038 2.898 

150 -1.178 2.020 -1.504 2.308 -2.144 2.855 

200 -1.241 1.978 -1.565 2.270 -2.209 2.828 

300 -1.317 1.922 -1.640 2.217 -2.284 2.795 

 

TABLE IV 
CRITICAL VALUES OF LAWLESS TEST STATISTIC (7) 

n  

α 

0.9 0.95 0.99 

1W  2W  1W  2W  1W  2W  

5 0.330 0.917 0.274 0.943 0.181 0.975 

10 0.376 0.821 0.334 0.851 0.259 0.902 

15 0.402 0.772 0.367 0.801 0.303 0.852 

20 0.419 0.743 0.389 0.770 0.331 0.818 

25 0.432 0.723 0.404 0.748 0.352 0.793 

30 0.442 0.708 0.416 0.731 0.368 0.774 

40 0.456 0.688 0.434 0.708 0.391 0.746 

50 0.466 0.674 0.446 0.692 0.408 0.728 

100 0.492 0.6395 0.478 0.653 0.450 0.680 

150 0.504 0.625 0.492 0.636 0.470 0.658 

200 0.511 0.616 0.501 0.626 0.482 0.645 

300 0.520 0.606 0.512 0.614 0.496 0.629 

F. Greenwood test 

The Greenwood exponentiality test has the following test 

statistic: 
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      (8) 

This test is two-sided; the hypothesis of exponentiality is 

rejected for both small and large values of test statistic. The 

critical values of test statistic (8) are shown in Table V. As 

said in [2] the critical values of Greenwood test statistic (8) 

for sample sizes 1n   coincided with ones of uniformity 

Greenwood test statistic for sample sizes n . The distribu-

tions of both test statistics for their true hypotheses and 

50n   are demonstrated on fig.10. The description of 

Greenwood uniformity test is presented in [5]. 

These distributions quite close. This proves that previous 

statement is true and difference between sample sizes is 

negligible for large values of n .  

 

 
Fig. 10 – The distributions of exponentiality and uniformity of Green-

wood test statistics 

TABLE V 
CRITICAL VALUES OF GREENWOOD TEST STATISTIC (8) 

n  

α 

0,9 0,95 0,99 

1G  2G  1G  2G  1G  2G  

5 1.154 2.545 1.109 2.839 1.049 3.442 

10 1.311 2.646 1.261 2.932 1.179 3.633 

15 1.398 2.624 1.347 2.882 1.261 3.521 

20 1.456 2.590 1.405 2.818 1.319 3.395 

30 1.531 2.525 1.483 2.714 1.400 3.192 

40 1.581 2.476 1.534 2.641 1.455 3.049 

50 1.617 2.438 1.572 2.583 1.494 2.938 

100 1.713 2.327 1.675 2.424 1.608 2.651 

150 1.760 2.271 1.726 2.347 1.666 2.521 

200 1.789 2.236 1.758 2.300 1.702 2.443 

300 1.824 2.194 1.798 2.243 1.748 2.352 

F. Epstein test  

The test statistic is [6, 7, 8]: 

 

   

1 1

1 1
2 ln ln

,
1 1 6

n n
i ii i
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n D D
n n
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 

  
  

  


 

 

     (9) 

where  

        1 01   0 , .i i iD n i x x x      
This test statistic (9) is test statistic (1) of Bartlett-Moran 

under replace  ix  on iD . As you can see iD  estimates 

difference between neighbors in ordered statistics 

     1 2
...

n
x x x   . 

This test is two-sided. The distributions of the test statis-

tic (9) under alternatives 1 3H H differ in both directions 

from the distribution of test statistic under null hypothesis 

(see fig.11).  

 
Fig. 11 – The distributions of test statistic (9) under 0 3H H  for 50n 

 

In [8] said that distribution of   0|nG EPS H  is chi-

squared distribution with ( −1) degree of freedom. However 

there is some distinction between the distributions, the 

example for 100n   are shown in fig.12. 

 

Fig. 12 – The distribution of test statistic (9) and 2  distribution 

G. Moran test 

The test statistic is [8]: 

1

1
ln ;

n
i

n
i

x
T

n x





                 (10) 

where 0.577215  is Euler–Mascheroni constant. 
 

The normalized test statistic for this test proposed in [11] 

is: 
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The convergence of (11) to the standard normal distribu-

tion law is quite “slow” and the distribution of test statistic is 

described by normal distribution only for large sample sizes. 

You can see that convergence on fig.13, where the distribu-

tions of test statistic for 100n  , 500n   and standard 

normal distribution law are presented. 

 

 
Fig. 13 – The distributions of test statistic (11) and normal distribution 

law 

H. Hegazy-Green test 

The Hegazy-Green exponentiality test has the following 

test statistics: 
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This test is right-sided like ones for normality and uni-

formity [5] testing. 

The critical values of test statistics obtained by modeling 

are shown in Table VI.  

This is worth nothing that considered test of Hegazy-Green 

has serious weakness under testing against 3H  type of 

alternative hypotheses in power analysis. 

 

TABLE VI 
CRITICAL VALUES OF HEGAZY-GREEN  

TEST STATISTICS (11) AND (12)  

n  
1T  2T  

0.9 0.95 0.99 0.9 0.95 0.99 

10 0.583 0.718 1.013 0.800 1.257 2.630 

20 0.412 0.493 0.678 0.470 0.713 1.428 

30 0.337 0.398 0.538 0.338 0.505 0.985 

40 0.292 0.342 0.457 0.267 0.393 0.755 

50 0.261 0.304 0.403 0.222 0.014 0.614 

100 0.184 0.213 0.277 0.123 0.175 0.323 

150 0.150 0.173 0.224 0.087 0.122 0.221 

200 0.130 0.150 0.193 0.068 0.094 0.169 

300 0.107 0.122 0.156 0.047 0.065 0.115 

 

 

TABLE VII 
THE EXPONENTIALITY TESTS RANKED BY POWER UNDER 50n  AND 0.05   

№ 

 
hypothesis 

1H  1   hypothesis 
2H  1   hypothesis 

3H  1   

1 Hegazy-Green test 1 0.925 Bartlett-Moran test 0.890 Bartlett-Moran test 0.315 

2 Hegazy-Green test 2 0.882 Lawless test 0.890 Lawless test 0.315 

3 Kimber-Michael test 0.516 Moran test 0.890 Moran test 0.315 

4 Correlation test 2 0.377 Epstein test 0.863 Epps-Pulley test 0.304 

5 
Klimko-Antle- 

Rademaker-Rockette test 
0.359 Epps-Pulley test 0.831 Frosini test 0.291 

6 Shapiro-Wilk test 1 0.359 Hollander-Proshan test 0.818 Epstein test 0.288 

7 Correlation test 1 0.344 Pietra/Sherman test 0.804 Hollander-Proshan test 0.280 

8 Frosini test 0.310 Frosini test 0.804 Kimber-Michael test 0.279 

9 Shapiro-Wilk test 2 0.290 Kochar test 0.772 Pietra/Sherman test 0.277 

10 Greenwood test 0.290 Hegazy-Green test 2 0.772 Kochar test 0.268 

11 Max interval test 0.254 Hegazy-Green test 1 0.761 Greenwood test 0.267 

12 Kochar test 0.218 Kimber-Michael test 0.706 Shapiro-Wilk test 2 0.266 

13 Epps-Pulley test 0.171 Shapiro-Wilk test 2 0.657 
Klimko-Antle- 

Rademaker-Rockette test 
0.223 

14 Epstein test 0.166 Greenwood test 0.657 Shapiro-Wilk test 1 0.223 

15 Bartlett-Moran test 0.143 
Klimko-Antle- 

Rademaker-Rockette test 
0.621 Max interval test 0.125 

16 Lawless test 0.143 Shapiro-Wilk test 1 0.621 Correlation test 1
 

0.053 

17 Moran test 0.143 Max interval test 0.347 Correlation test 2
 

0.016 

18 Pietra/Sherman  test 0.140 Correlation test 2
 

0.311 Hegazy-Green test 1 0.009 

19 Hollander-Proshan test 0.109 Correlation test 1
 

0.276 Hegazy-Green test 2 0.001 
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TABLE VIII 
THE EXPONENTIALITY TESTS RANKED BY POWER UNDER 100n  AND 0.05   

№ 
 

hypothesis 
1H  1   hypothesis 

2H  1   hypothesis 
3H  1   

1 Hegazy-Green test 1 0.996 Bartlett-Moran test 0.993 Bartlett-Moran test 0.582 

2 Hegazy-Green test 2 0.985 Lawless test 0.993 Lawless test 0.582 

3 Kimber-Michael test 0.876 Moran test 0.993 Moran test 0.582 

4 Frosini test 0.585 Epstein test 0.990 Epps-Pulley test 0.570 

5 Correlation test 2 0.548 Epps-Pulley test 0.982 Epstein test 0.552 

6 
Klimko-Antle- 

Rademaker-Rockette test 
0.541 Hollander-Proshan test 0.980 Frosini test 0.533 

7 Shapiro-Wilk test 1 0.541 Frosini test 0.977 Hollander-Proshan test 0.530 

8 Correlation test 1 0.525 Pietra/Sherman test 0.974 Pietra/Sherman test 0.520 

9 Shapiro-Wilk test 2 0.440 Kochar test 0.963 Kochar test 0.510 

10 Greenwood test 0.440 Hegazy-Green test 1 0.948 Shapiro-Wilk test 2 0.489 

11 Max interval test 0.366 Kimber-Michael test 0.947 Greenwood test 0.489 

12 Kochar test 0.320 Hegazy-Green test 2 0.938 Kimber-Michael test 0.472 

13 Epstein test 0.258 Shapiro-Wilk test 2 0.906 
Klimko-Antle- 

Rademaker-Rockette test 
0.438 

14 Bartlett-Moran test 0.218 Greenwood test 0.906 Shapiro-Wilk test 1 0.438 

15 Lawless test 0.218 Shapiro-Wilk test 1 0.893 Max interval test 0.185 

16 Moran test 0.218 
Klimko-Antle- 

Rademaker-Rockette test 
0.893 Correlation test 1

 
0.060 

17 Epps-Pulley test 0.214 Max interval test 0.462 Hegazy-Green test 1
 

0.033 

18 Hollander-Proshan test 0.202 Correlation test 2
 

0.442 Correlation test 2 0.019 

19 Pietra/Sherman  test 0.167 Correlation test 1
 

0.422 Hegazy-Green test 2 0.006 

 

 

 

IV. POWER ANALYSIS 

The Tables VII and VIII contain considered tests or-

dered by decreasing of power (quantity 1 ) under 

alternatives 1H , 2H
 

and 3H  (under sample sizes 

50,n   100n   and significance level 0.05  ). The 

description of another exponentiality tests demonstrated 

in paper [13].  The dark mark means that the test is 

biased, in other words that quantity   larger than 1 . 

The best results are shown by Hegazy-Green test under 

hypothesis 1H , the power of this test are larger than 

powers of other tests considered. However tests of 

Hegazy-Green have large biasness under hypothesis 

3H .The Kimball-Michael test has less power than 

Hegazy-Green tests under first alternative, but it has good 

powers under another hypotheses. Frosini test lose to 

previous tests but still show good power, especially under 

100n  . Also Frosini test has larger powers than 

Hegazy-Green tests and Kimber-Michael test under 

hypotheses 2 3H H . 

It should be noted that worst results under hypothesis 

H1 are shown by tests, limit distribution of which is 

normal distribution law (Pietra test, Hollander- Proshan 

test, etc). 

The Bartlett-Moran test, Lawless test and Moran test, 

which powers are identical, show the highest powers 

under alternative hypotheses 2H  and 3H . However, 

these tests demonstrate average power under hypothe-

sis 1H . The Epps-Pulley test, Frosini test, Hollander-

Proshan test and Epstein test demonstrate consistently 

good ability to distinguish those alternative hypotheses 

from exponential distribution as well.  

The low power are presented here by correlation tests 

(especially under hypothesis 3H ) and max interval test. 

As mentioned before Hegazy-Green test shows worst 

power under hypothesis with increasing failure rate. This 

weakness is demonstrated in work [6]. 

V. CONCLUSIONS 

The Frosini test and Kimber-Michael test are recom-

mended for usage from considered tests. It is worth noting 

that Frosini test has limit distribution as well. 

In spite of advantages, the application of Barltett-Moran 

test (and tests equal to it) and Pietra test is quite risky 

because its powers under hypotheses with non-monotonic 

failure rate isn’t good enough. A similar situation arises 

for application of Hegazy-Green test under hypotheses 

increasing failure rate.  

This study has been conducted with support of the 

Ministry of Education and Science of the Russian 

Federation within the framework of government order 

"The provision of scientific research" (No. 

1.4574.2017/6.7) and the project part of the government 

order (No. 1.1009.2017/4.6).  
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