
Chapter 18

A Comparative Analysis of Some Chi-Square
Goodness-of-Fit Tests for Censored Data

In this chapter, we consider some chi-square-type goodness-of-fit tests for right
censored samples, viz. the Nikulin–Rao–Robson (NRR) test and generalized
Pearson–Fisher (GPF) test. We compare these tests in terms of power in the case of
testing composite hypotheses by randomly censored and Type II censored samples.
Various grouping methods are considered, including equifrequent grouping, grouping
into intervals with equal expected numbers of failures as well as optimal grouping for
some given pairs of competing hypotheses. In the case of Type II censored data, we
compare by power chi-square goodness-of-fit tests with the Kolmogorov,
Cramer–von Mises–Smirnov and Anderson–Darling tests.

18.1. Introduction

In this chapter, we consider the problem of testing the composite goodness-of-fit
hypotheses H0 : F (t) ∈ {F0 ( t ; θ) , θ ∈ Θ}, meaning that the distribution F of
failure time T belongs to a certain parametric family F0(·; θ), where
θ = (θ1, ..., θq)

T ∈ Θ ⊂ Rq is unknown q-dimensional parameter. Let us denote by
λ0(t; θ) and Λ0(t; θ) the hazard rate and cumulative hazard rate functions
corresponding to the tested model, respectively. In reliability or survival studies, the
observed data are usually of the form

X = (X1, δ1) , (X2, δ2) , ..., (Xn, δn) ,
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where Xi = min (Ti, Ci) is the observation value, Ti is the lifetime and Ci is a
censoring time. The censoring indicator δi = I {Ti ≤ Ci}.

There are various forms of right censoring (for details, see [COH 91]):

– If individuals are observed up to some predetermined time c, then censoring is
referred to as Type I censoring and in the case when δi = 0 :Xi = c.

– If a life test is terminated whenever a specified number of failures (say, m)
have occurred, it is referred to as Type II censoring and in this case when δi = 0:
Xi = X(m), where X(m) is the last observed failure time.

– Let the lifetime T and the censoring time C be independent random variables
from the distribution functions F (t) and FC (t), respectively. All lifetimes and
censoring times are assumed mutually independent. Then, this form of censoring is
referred to as independent random censoring.

In the case of complete data (without censored observations), a well-known
modification of the classical chi-square tests is the NRR statistic, which was
proposed for the first time in [NIK 73c] and further developed in [NIK 73b],
[NIK 73a] and [RAO 74]. Later, it was studied in [LEM 01], [VOI 06] and [VOI 13].
The NRR statistic is based on the differences between two estimators of the
probabilities to fall into grouping intervals: one estimator is based on the empirical
distribution function and the other on the maximum likelihood estimators of
unknown parameters of the tested model using initial non-grouped data. Habib and
Thomas [HAB 86] and Hollander and Peña [HOL 92] considered natural
modifications of the NRR statistic for the case of censored data. The idea of
comparing observed and expected numbers of failures into grouping intervals in the
case of randomly censored data was proposed by Akritas [AKR 88] and was
developed independently by Hjort [HJO 90]. Bagdonavičius et al. [BAG 10] have
developed this direction, considering the choice of random grouping intervals as data
functions and writing simple formulas of test statistics for most applied families of
lifetime distributions. The NRR chi-square goodness-of-fit test has been also
developed for parametric accelerated failure time models [BAG 10, BAG 13].

Li and Doss [LI 93] have developed the generalization of the classical
Pearson–Fisher chi-square goodness-of-fit test for any situation, for which there is
available a non-parametric estimator F̂ of F , such that

√
n
%
F̂ − F

,
d−→ W , where

W is a continuous zero mean Gaussian process satisfying a mild regularity condition.
The GPF statistic for censored data is based on the differences between two
estimators of the probabilities to fall into grouping intervals: one estimator is based
on the Kaplan–Meier estimator of lifetime distribution and the other on the minimum
chi-square estimator of unknown parameters. This test was also developed for
randomly censored data by Kim [KIM 93].
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In this chapter, we present an empirical analysis of the NRR and GPF chi-square
tests for right censored data. We compare these tests by means of power in the case of
testing composite goodness-of-fit hypotheses by randomly censored and Type II
censored samples. Various grouping methods are considered. The investigation is
carried out through Monte Carlo simulations. From the obtained results, we draw
some conclusions.

18.2. Chi-square goodness-of-fit tests for censored data

Chi-square-type tests require dividing an observed interval [0, τ ] into k smaller
intervals Ij = (aj−1, aj ], 0 = a0 < a1 < . . . < ak−1 < ak = τ .

18.2.1. NRR χ2 test

For any t > 0, set

N(t) =
n;

i=1

I {Xi ≤ t, δi = 1},

which counts the number of observed failures in [0, t], and

Y (t) =

n;
i=1

I {Xi ≥ t},

which is the number of objects at risk just before time t.

Denote by Uj = N(aj)−N(aj−1) the number of observed failures and by

ej =

aj!
aj−1

λ0

%
u; θ̂n

,
Y (u)du

the “expected” number of failures in the interval Ij , j = 1, ..., k.

The NRR χ2 test statistic can be written in the form [BAG 10]

Yn
2 = ZT V̂ −Z,

where Z = (Z1, ..., Zk)
T , Zj = 1√

n
(Uj − ej), V̂ − is the general inverse of the

matrix

V̂ = Â− ĈT î−1Ĉ,



284 Statistical Models and Methods for Reliability and Survival Analysis

Â is the diagonal k × k matrix with diagonal elements Âj = Uj/n

î =
1

n

τ!
0

∂

∂θ
lnλ0

%
u; θ̂n

,(
∂

∂θ
lnλ0

%
u; θ̂n

,/T

dN(u),

Ĉj =
1

n

!
Ij

∂

∂θ
lnλ0

%
u; θ̂n

,
dN(u),

where θ̂n is the maximum likelihood estimate of unknown parameters of the tested
model using initial non-grouped censored data. The limiting distribution of the test
statistic is χ2

r , r = rank(V −). So, the hypothesis is rejected with approximate
significance level α if Y 2

n > χ2
α (r).

In [CHI 11a] and [CHI 11b], we have studied the distributions of statistic Y 2
n and

the power of NRR test, depending on the form and degree of censoring by means of
Monte Carlo simulations.

18.2.2. GPF χ2 test

Let F̂n(t) be the Kaplan–Meier estimator of the lifetime distribution F . Define the
empirical probabilities to fall into grouping intervals as

p̂j = F̂n(aj)− F̂n(aj−1), j = 1, ..., k,

where p̂1 and p̂k must be defined as p̂1 = F̂n(a1) and p̂k = 1− F̂n(ak−1). Denote by

pj(θ) = F0(aj , θ)− F0(aj−1, θ)

the theoretical probabilities to fall into grouping intervals. Unknown parameters of the
tested distribution are estimated as follows

θ̃n = Argmin
θ

ξTn (θ)ξn(θ),

where ξn(θ) =

(
np̂1−np1(θ)√

np1(θ)
, ..., np̂k−npk(θ)√

npk(θ)

/T

.

It is well known [LI 93] that ξn(θ̃n)
d−→ N(0,Σ) , where

Σ = PDJΣ(1)JTDP,
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P = I − C
'
CTC

.−1
CT , C = D

'
∂
∂θp(θ)

.T
, p (θ) = (p1 (θ) , ..., pk (θ))

T ,

D = diag
%
(p1 (θ))

−1/2
, ..., (pk (θ))

−1/2
,
,

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
−1 1 0 . . . 0
0 −1 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
k×(k−1)

.

The elements of matrix Σ(1) are calculated by the formula

σ
(1)
ij = (1− F0(ai, θ)) · (1− F0(aj , θ)) · v (min(ai, aj)) ,

where the variance function v(t) =
t"
0

dF0(u;θ)

(1−F (u;θ))2(1−FC(u))
. Here, the Kaplan–Meier

estimator, obtained by the inverted sample, in which δi is replaced by 1 − δi, can be
used as the distribution of censoring times FC(t). Let Σ̂ be obtained by using the
minimum chi-square estimator θ̃n as θ in formulas for the matrix Σ, and Σ̂+ denotes
the Moore–Penrose inverse of Σ̂. Then, under H0, the statistic of GPF test

X2
n = ξTn

%
θ̃n

,
Σ̂+ξn

%
θ̃n

,
has the χ2-distribution with k − q − 1 degrees of freedom as n → ∞.

18.3. The choice of grouping intervals

When using chi-square goodness-of-fit tests, the problem of choosing boundary
points and the number of grouping intervals is always important, as the power of
these tests considerably depends on the grouping method used. In the case of
complete samples (without censored observations), this problem was investigated in
[VOI 09], [DEN 89], [LEM 98], [LEM 00], [LEM 01] and [DEN 04]. In particular,
in [LEM 00], the investigation of the power of the Pearson and NRR tests for
complete samples has been carried out for various numbers of intervals and grouping
methods. The partition of the real line into equiprobable intervals (EPG) is not an
optimal grouping method, as a rule. In [DEN 79], it was shown for the first time that
asymptotically optimal grouping, for which the loss of the Fisher information from
grouping is minimized, enables us to maximize the power of the Pearson test against
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close competing hypotheses. For example, it is possible to maximize the determinant
of the Fisher information matrix for grouped data

JG(θ) =

k;
j=1

∂
∂θpj(θ)

'
∂
∂θpj(θ)

.T
pj(θ)

,

i.e. to solve the problem of D-optimal grouping

max
a1<...<ak−1

det (JG(θ)) . [18.1]

In the case of an A-optimality criterion, the trace of the information matrix JG(θ)
is maximized by the boundary points

max
a1<...<ak−1

Tr (JG(θ)) , [18.2]

and an E-optimality criterion maximizes the minimum eigenvalue of the information
matrix

max
a1<...<ak−1

min
l=1,q

λl (JG(θ)) . [18.3]

The problem of asymptotically optimal grouping by the A- and E-optimality
criteria has been solved for certain distribution families, and the tables of A-optimal
grouping are given in [LEM 11]. The versions of asymptotically optimal grouping
maximize the test power relative to a set of close competing hypotheses, but they do
not ensure the highest power against some given competing hypothesis. For the given
competing hypothesis H1, it is possible to construct the χ2 test, which has the
highest power for testing hypothesis H0 against H1. For example, in the case of χ2

Pearson test, it is possible to maximize the non-centrality parameter for the given
number of intervals k:

max
a1<a2<....<ak−1

⎛⎝n

k;
j=1

'
p1j

'
θ1
.− p0j

'
θ0
..2

p0j (θ
0)

⎞⎠ , [18.4]

where

p0j
'
θ0
.
=

aj!
aj−1

f0
'
u; θ0

.
du and p1j

'
θ1
.
=

aj!
aj−1

f1
'
u; θ1

.
du

are the probabilities to fall into jth interval according to the hypotheses H0 and H1,
respectively. Let us refer to this grouping method as optimal grouping.
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Asymptotically optimal boundary points, corresponding to different optimality
criteria, as well as the optimal points, corresponding to [18.4], are considerably
different from each other. For example, the boundary points maximizing criteria
[18.1]–[18.4] for the following pair of competing hypotheses are given in Table 18.1.
The null hypothesis H0 is the normal distribution with density function
f(t) = 1

θ2
√
2π

exp
�
− (t−θ1)

2

2θ2
2

	
, and parameters θ1 = 0, θ2 = 1, and the competing

hypothesis H1 is the logistic distribution with density function

f(t) = π
θ2

√
3
exp

�
−π(t−θ1)

θ2
√
3

	:�
1 + exp

�
−π(t−θ1)

θ2
√
3

	�2
, and parameters θ1 = 0,

θ2 = 1.

Optimality criterion a1 a2 a3 a4 a5 a6 a7 a8

A-optimum −2.3758 −1.6915 −1.1047 −0.4667 0.4667 1.1047 1.6915 2.3758
D-optimum −2.3188 −1.6218 −1.0223 −0.3828 0.3828 1.0223 1.6218 2.3188
E-optimum −1.8638 −1.1965 −0.6805 −0.2216 0.2216 0.6805 1.1965 1.8638

Optimal grouping −3.1616 −2.0856 −1.2676 −0.4601 0.4601 1.2676 2.0856 3.1616

Table 18.1. Optimal boundary points for k = 9

Moreover, in the case of the given competing hypothesis, we can use the so-called
Neyman–Pearson classes [GRE 96], for which the random variable domain is
partitioned into intervals of two types, according to the inequalities f0(t) < f1(t) and
f0(t) > f1(t), where f0(t) and f1(t) are the density functions, corresponding to the
competing hypotheses. For H0 and H1 from our example, we have the first-type
intervals

(−∞;−2.3747], (−0.6828; 0.6828], (2.3747;∞),

and the second-type intervals

(−2.3747;−0.6828], (0.6828; 2.3747].

Figures 18.1 and 18.2 illustrate the power of the Pearson χ2 test for the
hypotheses H0 and H1 of our example in the case of different grouping methods,
depending on the number of intervals (α = 0.1, n = 500). The powers of the
well-known non-parametric Kolmogorov, Cramer-von Mises-Smirnov and
Anderson–Darling goodness-of-fit tests are given for the comparison.

It is obvious that the power of the χ2 tests for censored samples is also influenced
by some other factors, associated with the form of censoring (the type and degree of
censoring, as well as the distribution of censoring times). The usage of grouping
methods, mentioned above, for censored samples may result in some difficulties,
such as the fact that not all boundary points may belong to the observed interval
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[0, τ ], or some intervals may not contain complete observations, which does not
allow calculation of the NRR statistic. In such situations, it is necessary to combine
intervals or change boundary points of intervals. In any case, the boundary points of
grouping intervals should be chosen, taking into account the form of censoring. In
this chapter, we consider three such grouping methods.

Figure 18.1. The power of the χ2 Pearson test when testing simple hypothesis

Figure 18.2. The power of the χ2 Pearson test when testing
composite hypothesis
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18.3.1. Equifrequent grouping (EFG)

In this grouping method, the boundary points are chosen in the interval [0, τ ] from
the condition of equal (or almost equal) numbers of complete observations, falling
into grouping intervals.

18.3.2. Intervals with equal expected numbers of failures (EENFG)

In [BAG 10], it is recommended to take aj as random data functions, dividing the
interval [0, τ ] into k intervals with equal expected numbers of complete observations
(which are not necessary integer). In this case, aj are calculated as follows. Define

Ek =

τ!
0

λ0

%
u; θ̂n

,
Y (u)du,

Ej = j
kEk , j = 1, ..., k. Denote by X(1) ≤ X(2) ≤ ... ≤ X(n) the ordered sample

from X1, ..., Xn, X(0) = 0. Set

bi = (n− i) Λ0

%
X(i); θ̂n

,
+

i;
l=1

Λ0

%
X(l); θ̂n

,
.

If i is the smallest natural number, verifying Ej ∈ [bi−1, bi], j = 1, ..., k− 1, then

âj = Λ−1
0

&&
Ej −

i−1;
l=1

Λ0

%
X(l); θ̂n

,-9
(n− i+ 1); θ̂n

-
,

âk = X(n), where Λ−1
0 (·) is the inverse of the cumulative hazard rate function.

18.3.3. Optimal grouping (OptG)

In the case of testing hypothesis H0 against a given competing hypothesis H1 by
randomly censored sample, the optimal boundary points of the grouping intervals can
be obtained by solving the maximization problem, which is similar to [18.4]

max
a1<a2<....<ak−1

⎛⎝n

k;
j=1

'
p1j

'
θ1
.− p0j

'
θ0
..2

p0j (θ
0)

⎞⎠ , [18.5]
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where

p0j
'
θ0
.
=

aj!
aj−1

'
1− FC (u)

.
f0

'
u; θ0

.
du

and

p1j
'
θ1
.
=

aj!
aj−1

'
1− FC (u)

.
f1

'
u; θ1

.
du

are the probabilities to fall into jth interval according to hypotheses H0 and H1,
respectively. If the distribution of censoring times FC(t) is unknown (which is a
typical situation in practice), then we can use the Kaplan–Meier estimator as FC(t),
which is obtained by the inverted sample, in which δi is replaced by 1− δi.

REMARK 18.1.– The maximized function in [18.5] is multiextremal, so the global
optimization methods are required to solve this problem.

REMARK 18.2.– Strictly speaking, the usage of EENFG and OptG does not guarantee
that each grouping interval will contain complete observations, especially in the case
of large degrees of censoring. In our simulation study, when such a situation occurs,
we change boundary points so that each interval would contain at least one complete
observation.

18.4. Empirical power study

In this chapter, we study the power of the considered χ2 goodness-of-fit tests for
two pairs of close competing hypotheses through Monte Carlo simulations. Three
grouping methods: EFG, EENFG and OptG are used, and the number of intervals k
is taken as equal to 3, 4, 5 and 6. Let us emphasize that all results presented below
have been obtained in the case of testing composite hypotheses. The estimates of the
power are calculated from the distributions of the test statistics G (S|H0) and
G (S|H1), which are simulated on the basis of censored samples of size n = 200.
The number of simulations used is N = 105. The values of the power of the tests are
calculated with the nominal significance level α = 0.1. Let us consider first the null
hypothesis H0 is the Weibull distribution with the density function

f (t; θ) = θ2
t

%
t
θ1

,θ2
exp

(
−
%

t
θ1

,θ2
/

and the parameters θ1 = 2, θ2 = 2. The

competing hypothesis H1 is the gamma distribution with the density function

f (t; θ) = 1
θ1·Γ(θ2)

%
t
θ1

,θ2−1

exp
%
− t

θ1

,
and parameters θ1 = 0.5577, θ2 = 3.1215.
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In the case of random censoring, we need to specify the distribution of censoring
times. We have chosen two different families of distributions for censoring times:
Type I beta-distribution family with the density function

fC (t; θ) = BI (θ1, θ2, θ3) =
1

θ3B (θ1, θ2)

(
t

θ3

/θ1−1 (
1− t

θ3

/θ1−1

,

where B (a, b) is the beta function; and the Weibull distribution family. Censoring
distributions are given in Table 18.2. The distribution parameters were adjusted so
that the average degree of censoring under considered null hypothesis is equal to some
given value. In the case of Type I beta distributions, censored observations appear in
the variational series of a censored sample approximately uniformly, as opposed to the
Weibull distributions, for which censored observations appear generally at the end of
the variational series.

Average degree of censoring Distribution of censoring times
10% BI(1.81, 1, 7) W(3.44, 6.88)
20% BI(1.19, 1, 7) W(2.87, 5.74)
30% BI(1, 1.24, 7) W(2.48, 4.96)
40% BI(1, 1.83, 7) W(2.16, 4.32)
50% BI(1, 2.58, 7) W(1.87, 3.74)

Table 18.2. Distributions of censoring times in the case of the lifetime
distribution W(2, 2)

In Table 18.3, the powers of the considered χ2 tests are presented for various
degrees of censoring in the case of randomly censored samples with censoring times
from the Weibull distributions with parameter values, given in Table 18.1. In
parentheses, there is the number of intervals for which the corresponding estimate of
the power was obtained. In Table 18.4, the powers of the considered χ2 tests are
presented in the case of Type I beta distributions of censoring times.

Average degree of censoring
Test Grouping method 0% 10% 20% 30% 40% 50%

EFG 0.51 (5) 0.38 (5) 0.32 (5) 0.28 (5) 0.25 (5) 0.22 (5)
NRR EENFG 0.51 (5) 0.41 (5) 0.34 (5) 0.30 (5) 0.27 (5) 0.23 (5)

OptG 0.61 (6) 0.46 (4) 0.41 (4) 0.37 (4) 0.32 (3) 0.29 (3)
EFG 0.20 (6) 0.17 (6) 0.15 (6) 0.15 (6) 0.14 (6) 0.13 (6)

GPF EENFG 0.26 (6) 0.22 (6) 0.19 (6) 0.18 (6) 0.16 (6) 0.16 (6)
OptG 0.56 (4) 0.51 (4) 0.44 (4) 0.37 (4) 0.35 (4) 0.29 (4)

Table 18.3. Power of the tests for the Weibull-gamma pair in the case of
randomly censored data with Weibull distribution of censoring times
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As can be seen from Tables 18.3 and 18.4, the power of the considered tests
depends on the distribution of censoring times: in the case of Type I beta distribution,
the power of the tests is higher, than for the Weibull distribution of censoring times.
The GPF χ2 test is considerably worse in terms of the power than the NRR test,
when using EFG and EENFG. But in the case of optimal grouping, it is impossible to
give preference to one test. The power of both tests in the case of optimal grouping is
much higher than in the case of equifrequent grouping and grouping into intervals
with equal expected numbers of failures.

Average degree of censoring
Test Grouping method 0% 10% 20% 30% 40% 50%

EFG 0.51 (5) 0.43 (5) 0.40 (5) 0.36 (5) 0.33 (5) 0.28 (5)
NRR EENFG 0.51 (6) 0.46 (6) 0.42 (6) 0.38 (6) 0.34 (6) 0.30 (6)

OptG 0.61 (6) 0.54 (6) 0.51 (4) 0.48 (4) 0.44 (4) 0.40 (4)
EFG 0.20 (6) 0.18 (6) 0.17 (6) 0.17 (6) 0.15 (6) 0.15 (6)

GPF EENFG 0.26 (6) 0.24 (6) 0.23 (6) 0.22 (6) 0.21 (6) 0.19 (6)
OptG 0.56 (4) 0.53 (4) 0.49 (4) 0.45 (4) 0.41 (4) 0.37 (4)

Table 18.4. Power of the tests for the Weibull-gamma pair in the case of
randomly censored data with Type I beta distribution of censoring times

It is significant to compare the considered χ2 tests with the modified Kolmogorov,
Cramer–von Mises–Smirnov and Anderson–Darling tests for censored samples, which
have been studied in detail through Monte Carlo simulations in [LEM 10a] for Type I
and Type II censored data and in [LEM 13] for randomly censored data. In Table 18.5,
the powers of the considered χ2 tests are presented for the Weibull-gamma pair of
competing hypotheses in the case of Type II censored samples, when using the optimal
grouping. In parentheses, there is the number of intervals, for which the corresponding
estimate of the power was obtained. The powers of modified Kolmogorov, Cramer-
von Mises-Smirnov and Anderson–Darling tests for censored samples are given for
comparison in the same table.

As can be seen from Table 18.5, the NRR χ2 test has an advantage in power
comparing not only with GPF test, but also with modified non-parametric
goodness-of-fit tests.

In Table 18.6, the powers of the considered χ2 tests, as well as the powers of
modified non-parametric tests are presented in the case of Type II censored samples for
the following pair of competing hypotheses. The null hypothesis H0 is the exponential
distribution with the density function f (t; θ) = 1

θ1
exp

%
− t

θ1

,
and the parameter

θ1 = 1. The competing hypothesis H1 is the Weibull distribution with parameters
θ1 = 1 , θ2 = 1.2. The powers of χ2 tests in Table 18.6 are given in the case of
optimal grouping.
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Degree of censoring
Test 0% 10% 20% 30% 40% 50%
NRR 0.61 (6) 0.53 (5) 0.44 (5) 0.34 (5) 0.25 (3) 0.20 (3)
GPF 0.56 (4) 0.27 (5) 0.25 (5) 0.17 (5) 0.14 (5) 0.13 (5)

Kolmogorov 0.51 0.40 0.33 0.26 0.22 0.18
Cramer-von Mises-Smirnov 0.58 0.44 0.35 0.27 0.22 0.18

Anderson–Darling 0.41 0.34 0.28 0.23 0.20 0.17

Table 18.5. Power of the tests for the Weibull-gamma pair in the case of
Type II censored data

Degree of censoring
Test 0% 10% 20% 30% 40% 50%
NRR 0.83 (3) 0.78 (3) 0.72 (3) 0.66 (3) 0.59 (3) 0.52 (3)
GPF 0.76 (3) 0.68 (5) 0.28 (4) 0.27 (4) 0.26 (4) 0.22 (4)

Kolmogorov 0.84 0.76 0.69 0.62 0.55 0.47
Cramer-von Mises-Smirnov 0.90 0.83 0.76 0.69 0.61 0.53

Anderson–Darling 0.91 0.85 0.79 0.72 0.65 0.56

Table 18.6. Power of the tests for the exponential-Weibull pair in the case of
Type II censored data

As can be seen from Table 18.6, the NRR test here has a higher power than the
GPF test. Nevertheless, the power of the NRR test turned out to be slightly less than
the power of the Cramer–von Mises–Smirnov and Anderson–Darling tests.

18.5. Conclusions

The main advantage of the chi-square goodness-of-fit tests for censored data is
that the limiting distribution of these statistics is the well-known χ2-distribution. As
has been shown in [LEM 09], in the case of testing simple hypotheses by complete
samples (without censoring), the Pearson χ2 test has a considerable advantage in
power due to choosing optimal boundary points in the comparison with the
non-parametric Kolmogorov, Cramer–von Mises–Smirnov and Anderson–Darling
tests. As to the case of testing composite hypotheses, the non-parametric tests, as a
rule, have higher power, as compared with the chi-square tests [LEM 10b]. The best
properties of the chi-square tests, which enable them to compete with the
Cramer–von Mises–Smirnov and Anderson–Darling tests, are shown up when using
optimal grouping and choosing optimal number of intervals. As has been shown in
this study, this result is also confirmed in the case of censored data.

It has been shown that in the case of a given pair of competing hypotheses, it is
possible to increase essentially the power of the χ2 tests due to the choice of optimal
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boundary points of grouping intervals. The power of both considered tests in the case
of optimal grouping is much higher than in the case of equifrequent grouping and
grouping into intervals with equal expected numbers of failures. The generalized χ2

Pearson–Fisher test is considerably worse in terms of the power, than the NRR χ2

test, when EFG and EENFG are used. But in the case of optimal grouping, it is
impossible to give preference to one test. The power of the considered tests also
depends on the distribution of censoring times: in the case when censored
observations are “uniformly” distributed in the variational series, the power of the
tests is higher as compared to when censored observations appear generally at the
end of the variational series.
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