
Chapter 31
Application of Nonparametric Goodness-of-Fit
Tests for Composite Hypotheses in Case
of Unknown Distributions of Statistics

Boris Yu. Lemeshko, Alisa A. Gorbunova, Stanislav B. Lemeshko,
and Andrey P. Rogozhnikov

31.1 Introduction

Classical nonparametric tests were constructed for testing simple hypotheses: H0 W
F.x/ D F.x; �/, where � is known scalar or vector parameter of the distribution
function F.x; �/. When testing simple hypotheses nonparametric criteria are
distribution free, i.e. the distribution G.S jH0/, where S is the test statistic, does
not depend on the F.x; �/ when the hypothesis H0 is true.

When testing composite hypotheses H0 W F.x/ 2 fF.x; �/; � 2 �g, where
the estimate O� of a scalar or vector parameter of the distribution F.x; �/ is
calculated from the same sample, nonparametric tests lose the distribution freedom.
Conditional distributions G.S jH0/ of tests statistics for composite hypotheses
depend on a number of factors: the type of the distribution F.x; �/, corresponding
to the true hypothesis H0; the type of the estimated parameter and the number of
estimated parameters and, in some cases, the value of the parameter; the method of
the parameter estimation.

31.2 Nonparametric Goodness-of-Fit Criteria
for Testing Simple Hypotheses

In Kolmogorov test statistic the distance between the empirical and theoretical
distribution is determined by
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Dn D sup
jxj<1

jFn.x/ � F.x; �/j ;

where Fn.x/ is the empirical distribution function, n is the sample size. When
n ! 1, distribution of statistic

p
nDn for true hypothesis under test uniformly

converges to the Kolmogorov distribution [15]

K.S/ D
1X

kD�1
.�1/ke�2k2s2

:

While testing hypothesis using the Kolmogorov test it is advisable to use the
statistic with Bolshev correction [4] given by [5]:

SK D 6nDn C 1

6
p

n
; (31.1)

where Dn D max.DC
n ; D�

n /,

DC
n D max

16i6n

�
i

n
� F.xi ; �/

�
; D�

n D max
16i6n

�
F.xi ; �/ � i � 1

n

�
;

n is the sample size, x1; x2; : : : ; xn are the sample values in an increasing order.
When a simple hypothesis H0 under test is true, the statistic (31.1) converges to the
Kolmogorov distribution significantly faster than statistic

p
nDn.

The statistic of Cramer–von Mises–Smirnov test has the following form [3]:

S! D 1

12n
C

nX

iD1

�
F.xi ; �/ � 2i � 1

2n

� 2

; (31.2)

and Anderson–Darling test statistic [2, 3] is

S˝ D �n � 2

nX

iD1

�
2i � 1

2n
ln F.xi ; �/ C

�
1 � 2i � 1

2n

�
ln.1 � F.xi ; �//

�
:

(31.3)

When testing simple hypotheses, statistic (31.2) has the following distribution
a1.s/ and the statistic (31.3) has the distribution a2.s/ [5].

The Kuiper test [16] is based on the statistic Vn D DC
n C D�

n . The limit
distribution of statistic

p
nVn while testing simple hypothesis is the following

distribution function [36]:

G.sjH0/ D 1 �
1X

mD1

2.4m2s2 � 1/e�2m2s2

:
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The following modification of the statistic converges faster to the limit
distribution [38]:

V D Vn

�p
n C 0:155 C 0:24p

n

�
;

or the modification that we have chosen:

V mod
n D p

n.DC
n C D�

n / C 1

3
p

n
: (31.4)

Dependence of the distribution of statistic (31.4) on the sample size is practically
negligible when n > 30.

As a model of limit distribution we can use the beta distribution of the third kind
with the density

f .s/ D �
�0

2
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1 � s��4
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��1�1
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1 C .�2 � 1/ s��4

�3

i�0C�1
;

and the vector of parameters � D .7:8624; 7:6629; 2:6927; 0:495/T , obtained by the
simulation of the distribution of the statistic (31.4).

Watson test [41, 42] is used in the following form

U 2
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The limit distribution of the statistic (31.5) while testing simple hypotheses is
given by [41, 42]:

G.sjH0/ D 1 � 2

1X

mD1
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The good model for the limit distribution of the statistic (31.5) is the inverse
Gaussian distribution with the density

f .s/ D 1

�2

0

B@
�0

2�
�

s��3

�2

�2

1

CA

1=2

exp

0

@�
�0

��
s��3

�2

�
� �1

�

2�2
1

�
s��3

�2

�

1

A



322 B.Yu. Lemeshko et al.

and the vector of parameters � D .0:2044; 0:08344; 1:0; 0:0/T , obtained by the
simulation of the empirical distribution of the statistic (31.5). This distribution as
well as the limit one could be used in testing simple hypotheses with Watson test to
calculate the achieved significance level.

Zhang tests were proposed in papers [43–45]. The statistics of these criteria are:

ZKD max
16i6n
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(31.6)
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The author gives the percentage points for statistics distributions for the case
of testing simple hypotheses. The strong dependence of statistics distributions on
the sample size n prevents one from wide use of the criteria with the statistics
(31.6)–(31.8). For example, Fig. 31.1 shows a dependence of the distribution of
the statistics (31.7) on the sample size while testing simple hypotheses.

Of course, this dependence on the sample size n remains for the case of testing
composite hypotheses.

Fig. 31.1 The distribution Gn.ZAjH0/ of statistic (31.7) depending on the sample size n for
testing simple hypothesis
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31.3 Comparative Analysis of the Tests Power

In papers [25–27] the power of Kolmogorov (K), Cramer–von Mises–Smirnov
(KMS ), Anderson–Darling (AD) tests, and also �2 criteria was analyzed and
compared for testing simple and composite hypotheses for a number of different
pairs of competing distributions. In the case of testing simple hypotheses and using
asymptotically optimal grouping [17] in �2 criterion, this test has the advantage
in power compared with nonparametric tests [25, 26]. When testing composite
hypotheses, the power of nonparametric tests increases significantly, and they
become more powerful.

In order to be able to compare the power of Kuiper (Vn), Watson (U 2
n ), and Zhang

tests (ZK , ZA, ZC ) with the power of other goodness-of-fit tests, the power of these
criteria was calculated for the same pairs of competing distributions in the paper
[19] alike papers [25–27].

The first pair is the normal and logistics distribution: for the hypothesis H0—the
normal distribution with the density:

f .x/ D 1
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p
2�
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2�2
0

�
;

and for competing hypothesis H1—the logistic distribution with the density:
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and parameters �0 D 1, �1 D 1. For the simple hypothesis H0 parameters of the
normal distribution have the same values. These two distributions are close and
difficult to distinguish with goodness-of-fit tests.

The second pair was the following: H0—Weibull distribution with the density

f .x/ D �0.x � �2/�0�1

�
�0

1

exp

(
�
�

x � �2

�1

��0
)

and parameters �0 D 2, �1 D 2, �2 D 0; H1 corresponds to gamma distribution with
the density

f .x/ D 1

�1� .�0/

�
x � �2

�1

��0�1

e�.x��2/=�1

and parameters �0 D 2:12154, �1 D 0:557706, �2 D 0, when gamma distribution is
the closest to the Weibull counterpart.

Comparing the estimates of the power for the Kuiper, Watson and Zhang
tests [19] with results for Kolmogorov, Cramer–von Mises–Smirnov, and



324 B.Yu. Lemeshko et al.

Anderson–Darling tests [25–27], the nonparametric tests can be ordered by decrease
in power as follows:

• for testing simple hypotheses with a pair “normal—logistic”: ZC � ZA � ZK �
U 2

n � Vn � AD � K � KMS ;
• for testing simple hypotheses with a pair “Weibull—gamma”: ZC � ZA �

ZK � U 2
n � Vn � AD � KMS � K;

• for testing composite hypotheses with a pair “normal—logistic”: ZA � ZC �
ZK � AD � KMS � U 2

n � Vn � K;
• for testing composite hypotheses with a pair “Weibull—gamma”: ZA � ZC �

AD � ZK � KMS � U 2
n � Vn � K.

31.4 The Distribution of Statistics for Testing Composite
Hypotheses

When testing composite hypotheses conditional distribution G.S jH0/ of the statistic
depends on several factors: the type of the observed distribution for true hypothesis
H0; the type of the estimated parameter and the number of parameters to be
estimated, in some cases the parameter values (e.g., for the families of gamma and
beta distributions), the method of parameter estimation. The differences between
distributions of the one statistic for testing simple and composite hypotheses are
very significant, so we could not neglect this fact. For example, Fig. 31.2 shows
the distribution of Kuiper statistic (31.4) for testing composite hypotheses for
the different distributions using maximum likelihood estimates (MLE) of the two
parameters.

Fig. 31.2 The distribution of Kuiper statistic (31.4) for testing composite hypotheses using MLEs
of the two parameters
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Fig. 31.3 The distribution of Watson statistic (31.5) for testing composite hypotheses using MLEs
of different number of parameters of the Su-Johnson distribution

Fig. 31.4 The distribution of Anderson–Darling statistics (31.3) for testing composite hypotheses
using MLEs of three parameters of the generalized normal distribution, depending on the value of
the shape parameter �0

Figure 31.3 illustrates the dependence of the distribution of the Watson test
statistic (31.5) on the type and the number of estimated parameters having as an
example the Su-Johnson distribution with a density:
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Figure 31.4 shows the dependence of the distribution of Anderson–Darling
test statistics (31.3) for testing composite hypotheses using MLEs of the three
parameters of the generalized normal distribution depending on the value of the
shape parameter �0.
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The first work that initiates the study of limiting distributions of nonparamet-
ric goodness-of-fit statistics for composite hypotheses was [14]. Later, different
approaches were used to solve this problem: the limit distribution was investigated
by analytical methods [7–12, 30–34], the percentage points were calculated using
statistical modeling [6,35,37,38], the formulas were obtained to give a good approx-
imation for small values of the probabilities [39, 40].

In our studies [18–29] the distribution of nonparametric Kolmogorov, Cramer–
von Mises–Smirnov, and Anderson–Darling tests statistics were studied using
statistical modeling.

Further, based on obtained empirical distribution of statistics, we construct an
approximate analytical model of statistics distributions.

The obtained models of limiting distributions and percentage points for Kuiper
and Watson test statistics, which are required to test composite hypotheses (using
MLEs), could be found in the paper [20] for the most often used in applications
parametric distributions: Exponential, Seminormal, Rayleigh, Maxwell, Laplace,
Normal, Log-normal, Cauchy, Logistic, Extreme-value (maximum), Extreme-value
(minimum), Weibull, Sb-Johnson, Sl-Johnson, Su-Johnson.

Previously obtained similar models (and percentage points) for distributions
of Kolmogorov, Cramer–von Mises–Smirnov, and Anderson–Darling test statistics
(for distributions mentioned above) could be found in papers [21, 22, 24, 28].

The tables of percentage points and models of test statistics distributions were
based on simulated samples of the statistics with the size N D 106. Such N makes
the difference between the actual distribution G.S jH0/ and empirical counterpart
GN .S jH0/ that does not exceed 10�3. The values of the test statistic were calculated
using samples of pseudorandom values simulated for the observed distribution
F.x; �/ with the size n D 103. In such a case the distribution G.SnjH0/ practically
equal to the limit one G.S jH0/. The given models could be used for statistical
analysis if the sample sizes n > 25.

Unfortunately, the dependence of the nonparametric goodness-of-fit tests statis-
tics distributions for testing composite hypotheses on the values of the shape
parameter (or parameters) (see Fig. 31.4) appears to be for many parametric distri-
butions implemented in the most interesting applications, particularly in problems
of survival and reliability. This is true for families of gamma, beta distributions of
the first, second, and third kind, generalized normal, generalized Weibull, inverse
Gaussian distributions, and many others.

The limit distributions and percentage points for Kolmogorov, Cramer–von
Mises–Smirnov, and Anderson–Darling tests for testing composite hypotheses with
the family of gamma distributions were obtained in paper [22], with the inverse
Gaussian distribution—in papers [29], with generalized normal distribution—in
paper [23], with the generalized Weibull distribution—in paper [1]. It should be
noted that the data in these papers were obtained only for a limited number of,
generally, integer values of the shape parameter (or parameters).
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31.5 An Interactive Method to Study Distributions
of Statistics

The dependence of the test statistics distributions on the values of the shape
parameter or parameters is the most serious difficulty that is faced while applying
nonparametric goodness-of-fit criteria to test composite hypotheses in different
applications.

Since estimates of the parameters are only known during the analysis, so
the statistic distribution required to test the hypothesis could not be obtained in
advance (before calculating estimates for the analyzed sample!). For criteria with
statistics (31.6)–(31.8), the problem is harder as statistics distributions depend on
the samples sizes. Therefore, statistics distributions of applied criteria should be
obtained interactively during statistical analysis, and then should be used to make
conclusions about composite hypothesis under test.

The implementation of such an interactive mode requires developed software
that allows parallelizing the simulation process and taking available computing
resources. While using parallel computing the time to obtain the required test
statistic distribution GN .SnjH0/ (with the required accuracy) and use it to calculate
the achieved significance level P fSn > S�g, where S� is the value of the statistic
calculated using an original sample, is not very noticeable compared to a process of
statistical analysis.

In the program system [13], an interactive method to research statistics dis-
tributions is implemented for the following nonparametric goodness-of-fit tests:
Kolmogorov, Cramer–von Mises–Smirnov, Anderson–Darling, Kuiper, Watson, and
three Zhang tests. Moreover, the different methods of parameter estimation could be
used there.

The following example demonstrates the accuracy of calculating the achieved
significance level depending on sample size N of simulated interactively empirical
statistics distributions [13]. The inverse Gaussian distribution is widely used in
reliability and in survival analysis [29]. In this case, the � -distribution (generalized
gamma distribution) can be considered as the competing law.

Example. You should check the composite hypothesis that the following sample
with the size n D 100 has the inverse Gaussian distribution with the density (31.9):

0:945 1:040 0:239 0:382 0:398 0:946 1:248 1:437 0:286 0:987

2:009 0:319 0:498 0:694 0:340 1:289 0:316 1:839 0:432 0:705

0:371 0:668 0:421 1:267 0:466 0:311 0:466 0:967 1:031 0:477

0:322 1:656 1:745 0:786 0:253 1:260 0:145 3:032 0:329 0:645

0:374 0:236 2:081 1:198 0:692 0:599 0:811 0:274 1:311 0:534

1:048 1:411 1:052 1:051 4:682 0:111 1:201 0:375 0:373 3:694

0:426 0:675 3:150 0:424 1:422 3:058 1:579 0:436 1:167 0:445

0:463 0:759 1:598 2:270 0:884 0:448 0:858 0:310 0:431 0:919

0:796 0:415 0:143 0:805 0:827 0:161 8:028 0:149 2:396 2:514

1:027 0:775 0:240 2:745 0:885 0:672 0:810 0:144 0:125 1:621
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f .x/ D 1

�2

0

B@
�0

2�
�

x��3

�2

�3

1

CA

1=2

exp

0

B@�
�0

��
x��3

�2

�
� �1

�2

2�2
1

�
x��3

�2

�

1

CA : (31.9)

The shift parameter �3 is assumed to be known and equal to 0.
The shape parameters �0, �1, and the scale parameter �2 are estimated using

the sample. The MLEs calculated using the sample above are the following:
O�0 D 0:7481, O�1 D 0:7808, O�2 D 1:3202. Statistics distributions of nonparametric
goodness-of-fit tests depend on the values of the shape parameters �0 and �1 [46,
47], do not depend on the value of the scale parameter �2 and can be calculated
using values �0 D 0:7481, �1 D 0:7808.

The calculated values of the statistics S�
i for Kuiper, Watson, Zhang,

Kolmogorov, Cramer–von Mises–Smirnov, Anderson–Darling tests and achieved
significance levels for these values P fS > S�

i jH0g (p-values), obtained with
different accuracy of simulation (with different sizes N of simulated samples of
statistics) are given in Table 31.1.

The similar results for testing goodness-of-fit of a given sample with
� -distribution with the density:

f .x/ D �1

�3� .�0/

�
x � �4

�3

��0�1�1

e
�
�

x��4
�3

��1

are given in Table 31.2. The MLEs of the parameters are �0 D 2:4933, �1 D 0:6065,
�2 D 0:1697, �4 D 0:10308. In this case the distribution of the test statistic depends
on the values of the shape parameters �0 and �1.

The implemented interactive mode to study statistics distributions enables to cor-
rectly apply goodness-of-fit Kolmogorov, Cramer–von Mises–Smirnov, Anderson–
Darling, Kuiper, Watson, Zhang (with statistics ZC , ZA, ZK) tests with calculating
the achieved significance level (p-value) even in those cases when the statistic
distribution for true hypothesis H0 is unknown while testing composite hypothesis.
For Zhang tests, this method allows us to test a simple hypothesis for every
sample size.

Table 31.1 The achieved significance levels for different sizes N when
testing goodness-of-fit with the inverse Gaussian distribution

The values of test statistics N D 103 N D 104 N D 105 N D 106

V mod
n D 1:1113 0.479 0.492 0.493 0.492

U 2
n D 0:05200 0.467 0.479 0.483 0.482

ZA D 3:3043 0.661 0.681 0.679 0.678

ZC D 4:7975 0.751 0.776 0.777 0.776

ZK D 1:4164 0.263 0.278 0.272 0.270

K D 0:5919 0.643 0.659 0.662 0.662

KMS D 0:05387 0.540 0.557 0.560 0.561

AD D 0:3514 0.529 0.549 0.548 0.547



31 Application of Nonparametric Goodness-of-Fit Tests for Composite. . . 329

Table 31.2 The achieved significance levels for different sizes N when
testing goodness-of-fit with the � -distribution

The values of test statistics N D 103 N D 104 N D 105 N D 106

V mod
n D 1:14855 0.321 0.321 0.323 0.322

U 2
n D 0:057777 0.271 0.265 0.267 0.269

ZA D 3:30999 0.235 0.245 0.240 0.240

ZC D 4:26688 0.512 0.557 0.559 0.559

ZK D 1:01942 0.336 0.347 0.345 0.344

K D 0:60265 0.425 0.423 0.423 0.424

KMS D 0:05831 0.278 0.272 0.276 0.277

AD D 0:39234 0.234 0.238 0.238 0.237
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