
Chapter 5

Interactive Investigation of Statistical
Regularities in Testing Composite Hypotheses

of Goodness of Fit

In this chapter1, a “real-time” ability to simulate and research distributions of test
statistics in the course of testing a complex hypothesis of goodness of fit for
distributions with estimated parameters is implemented by means of parallel
computing. It makes it possible to make correct statistical inferences even in those
situations when the distribution of test statistic is unknown before the testing
procedure starts.

5.1. Introduction

In composite hypotheses testing in the form H0 : F (x) ∈ {F (x, θ), θ ∈ Θ}, when
an estimate θ̂ of scalar or vector distribution parameter θ is calculated from sample
under testing, the non-parametric goodness-of-fit Kolmogorov (K), ω2 Cramér–von
Mises–Smirnov (CMS) and Ω2 Anderson–Darling (AD) tests lose their property of
being distribution free.

The value:

Dn = sup
|x|<∞

|Fn(x)− F (x, θ)|
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is used in the Kolmogorov test as a distance between empirical and theoretical laws
(where Fn(x) is an empirical distribution function, and n is the size of the sample).
When testing hypotheses, this statistic should be used with Bolshev’s correction
[BOL 87] in the form [BOL 83]:
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6nDn + 1
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n is the size of the sample, and x1, x2, . . . , xn are sample values in an increasing order.
The statistic [5.1] in testing a simple hypothesis follows the Kolmogorov distribution
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(−1)ke−2k2s2 .

In the ω2 CMS test, we use a statistic in the form:
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and in a test of Ω2 AD type [AND 52, AND 54], a statistic in the form:
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In testing a simple hypothesis, [5.2] has the distribution with CDF a1(·) (see
[BOL 83]):
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where I− 1
4
(·) and I 1

4
(·) are the modified Bessel functions:

Iν(z) =
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k=0

(z/2)
ν+2k

Γ(k + 1)Γ(k + ν + 1)
, |z| < ∞, |arg z| < π,
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and [5.3] has the distribution with CDF a2(·) [BOL 83]:
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5.2. Distributions of the test statistics in the case of testing composite hypotheses

Let us denote the distribution of a statistic S when hypothesis H0 is true as
G(S|H0). In our case, we will consider the statistics of Kolmogorov SK , CMS Sω

and AD SΩ in place of S. In composite hypothesis testing, G(S|H0) is affected by a
number of factors: the form of the distribution F (x, θ) that corresponds to the true
hypothesis H0; types and number of parameters to be estimated; the method of
parameter estimation; value of a specific parameter (e.g. for gamma distribution,
inverse Gaussian distribution (IGD), generalized Weibull distribution (GWD),
generalized Gaussian distribution (GGD) and beta-distribution families).

The investigation of statistic distributions of the non-parametric goodness-of-fit
tests for composite hypotheses began from the paper [KAC 55]. Then, various
approaches to solve this problem were used [DAR 55, DAR 57, DUR 73, DUR 75,
DUR 76, GIH 53, MAR 78, MAR 11, PEA 72, STE 70, STE 74, CHA 81, TYU 84a,
TYU 84b, DZH 82, NIK 92a, NIK 92b].

In our research [LEM 98, LEM 01, LEM 02, LEM 04, LEM 07a, LEM 07b,
LEM 09a, LEM 09b, LEM 10a, LEM 10b, LEM 10c, LEM 11a, LEM 11b], the
distributions of statistics of the non-parametric goodness-of-fit tests have been
investigated by means of methods of statistical simulation, and approximate models
of the distributions have been found on the basis of the obtained empirical
distributions. The most complete list of the constructed models of distributions of
statistics and tables of percentage points for the non-parametric goodness-of-fit tests
is provided in [LEM 09a], [LEM 09b], [LEM 10c], [LEM 11a], [LEM 11b] and
[LEM 11f]. These models and tables are applicable when maximum likelihood (ML)
estimators (MLEs) are used.

The distributions of statistics of non-parametric goodness-of-fit tests are affected
by a number of factors: the form of the observed law F (x, θ) that corresponds to the
true hypothesis H0; types and number of parameters to be estimated; the method of
parameter estimation. In these cases, there are no impediments for studying test
statistic distributions by means of statistical simulation and further construction of
approximate models for them when testing composite hypothesis [LEM 10a,
LEM 10b, LEM 10c].
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Complications arise when distributions G(S|H0) of non-parametric
goodness-of-fit tests depend on the value of specific parameter(s) of F (x, θ) (for
gamma distribution, GGD, IGD, GWD and beta-distribution families).

The existing dependence on parameters values should not be neglected. For
example, in composite hypotheses testing subject to GWD with the density function:
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⎞⎠ , [5.4]

where x ≥ 0 and θ0, θ1, θ2 are positive, the limiting distributions of statistics of
the non-parametric goodness-of-fit tests depend on value of the form parameter θ1.
In Figures 5.1 and 5.2 we can see the behavior of the distribution of statistic [5.3] in
testing composite hypotheses for family [5.4]. In the case when three parameters are
estimated by the ML method (Figure 5.1), we can see the following: when the value
of the shape parameter increases up to θ1 ≈ 2, the distribution G(S|H0) shifts to the
left. With θ1 continuing to increase further, the distribution G(S|H0) shifts into the
opposite direction. In a case of two parameters estimated by MLE (Figure 5.2), we
can see the following: as value of θ1 increases, the distribution G(S|H0) shifts to the
right.

Percentage points have been obtained by simulations, and models of marginal
statistic distributions of Kolmogorov, CMS and AD tests have been computed for the
following values of shape parameter θ1: 0.5, 1.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0. The
points and models are presented in Tables 5.1–5.6. The distribution parameters were
estimated with ML method.

Distributions G(S|H0) of the Kolmogorov, the CMS and the AD statistics are best
of all approximated by the family of the type III beta-distributions with the density
function:
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or by the family of the Sb-Johnson distributions:

Sb(θ0, θ1, θ2, θ3) =
θ1θ2

(x− θ3)(θ2 + θ3 − x)
exp

�
−1

2

(
θ0 − θ1 ln

x− θ3
θ2 + θ3 − x

/2


.



Interactive Investigation of Statistical Regularities 65

θ

θ

θ

G S H

S

Figure 5.1. Distributions of the Anderson–Darling statistic in testing goodness
of fit of family [5.4]. ML method is used to estimate parameters θ0, θ1 and θ2
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Figure 5.2. Distributions of the Anderson–Darling statistic in testing goodness
of fit of family [5.4]. ML method is used to estimate parameters θ0 and θ1

The tables of percentage points and the models of distributions of statistics have
been constructed from simulated samples of statistics of the size N = 106. Under this
size, the deviation the empirical cumulative distribution function (CDF) GN (S|H0)
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from the theoretical counterpart is less than 103. The values of statistics of goodness-
of-fit tests have been calculated using samples of size n = 103 of pseudorandom
variables following the given F (x, θ). For this value of n, CDF. G(Sn|H0) of statistics
is almost the same as the marginal CDF. G(S|H0).

Parameters estimated Percentage points Model
0.9 0.95 0.99

The Kolmogorov test
θ0 1.001 1.102 1.309 B3(6.5294, 6.8315, 3.5901, 2.0446,0.2801)
θ1 1.084 1.199 1.427 B3(5.4860, 5.9744, 3.4348, 2.1402, 0.3000)
θ2 1.038 1.144 1.360 B3(4.7833, 6.1285, 3.0596, 2.0214, 0.3200)

θ0, θ1 0.849 0.922 1.071 B3(6.2332, 6.0259,2.8200, 1.3000, 0.2800)
θ0, θ2 0.837 0.909 1.054 Sb(2.1787, 1.8756, 1.5259, 0.2567)
θ1, θ2 0.848 0.922 1.076 Sb(2.4861, 1.8758, 1.7026, 0.2664)

θ0, θ1, θ2 0.780 0.845 0.979 Sb(2.3507, 1.9291, 1.4629, 0.2495)
The Cramer–von Mises–Smirnov test

θ0 0.181 0.232 0.359 B3(5.1297, 2.5959, 22.9591,0.8000, 0.0081)
θ1 0.227 0.296 0.466 B3(7.4650, 2.6576, 44.4162, 1.3633, 0.0000)
θ2 0.198 0.255 0.395 B3(5.4489, 2.7019, 31.5609, 1.1500, 0.0062)

θ0, θ1 0.110 0.135 0.192 B3(6.3779, 4.6451, 27.3376, 1.0000, 0.0050)
θ0, θ2 0.106 0.129 0.183 Sb(3.7541, 1.5434, 0.5800, 0.0058)
θ1, θ2 0.112 0.138 0.200 B3(10.3369, 4.0734, 25.8270, 0.5802, 0.0000)

θ0, θ1, θ2 0.086 0.103 0.145 B3(6.7252, 4.6508, 16.7920, 0.4800, 0.0050)
The Anderson–Darling test

θ0 1.125 1.415 2.140 B3(4.9800, 4.1685, 17.0454, 7.1000, 0.0500)
θ1 1.279 1.625 2.478 B3(4.7602, 5.1000, 9.8527, 6.8675, 0.0000)
θ2 1.157 1.454 2.186 B3(3.0331, 4.0598, 9.3429, 5.9880, 0.1000)

θ0, θ1 0.673 0.806 1.120 B3(5.7172, 5.0419, 10.1641, 3.0044, 0.0550)
θ0, θ2 0.655 0.781 1.079 Sb(3.8953, 1.6481, 3.5052, 0.0513)
θ1, θ2 0.743 0.902 1.290 Sb(4.1462, 1.6136, 4.6254, 0.0535)

θ0, θ1, θ2 0.523 0.617 0.839 Sb(3.9313, 1.6905, 2.7078, 0.0530)

Table 5.1. Percentage points and models of the limiting distributions of
statistics of the non-parametric goodness-of-fit tests when ML method is used

for parameter estimation (θ1= 0.5)

The most serious impediment to a complete solution of the problem of testing
composite hypotheses by means of the non-parametric goodness-of-fit tests is that the
distributions of the test statistics depend on specific values of shape parameters of the
observed laws. In [LEM 07a, LEM 09a, LEM 09b, LEM 10a, LEM 10b, LEM 10c,
LEM 11a and LEM 11b], models of distributions of statistics were obtained for a
limited set of combinations of (integer) values of shape parameters (for gamma
distribution, two-sided exponential law, IGD and beta-distribution families). It is
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unrealistic to build the models for an infinite set of combinations of the parameter
values.

Parameters estimated Percentage points Model
0.9 0.95 0.99

The Kolmogorov test
θ0 1.181 1.316 1.585 B3(6.9734, 4.8247, 5.3213, 2.3800, 0.2690)
θ1 1.083 1.196 1.425 B3(4.6425, 6.6688, 2.8491, 2.2246, 0.3200)
θ2 0.994 1.092 1.290 B3(6.2635, 7.1481, 3.2059, 2.0000, 0.2800)

θ0, θ1 0.874 0.954 1.117 Sb(2.4299, 1.8866, 1.7504, 0.2598)
θ0, θ2 0.823 0.893 1.033 B3(5.8989, 7.5040, 2.4180, 1.3724, 0.2800)
θ1, θ2 0.815 0.883 1.023 Sb(2.4499, 1.9720, 1.6016, 0.2486)

θ0, θ1, θ2 0.758 0.820 0.946 Sb(2.3012, 1.9386, 1.3863, 0.2464)
The Cramer–von Mises–Smirnov test

θ0 0.320 0.431 0.706 B3(2.2422, 2.2970, 16.4663, 1.6500, 0.0130)
θ1 0.227 0.295 0.464 B3(5.3830, 2.6954, 40.5199, 1.6450, 0.0050)
θ2 0.174 0.221 0.336 B3(3.6505, 3.2499, 16.5445, 1.0000, 0.0100)

θ0, θ1 0.117 0.144 0.209 Sb(3.8667, 1.4603, 0.7583, 0.0059)
θ0, θ2 0.102 0.123 0.174 B3(12.2776, 4.1107, 27.2069, 0.4875, 0.0000)
θ1, θ2 0.103 0.127 0.182 B3(4.7144, 4.6690, 10.8816, 0.5261, 0.0059)

θ0, θ1, θ2 0.080 0.097 0.135 Sb(4.1842, 1.6587, 0.4794, 0.0061)
The Anderson–Darling test

θ0 1.724 2.280 3.639 B3(4.8106, 2.6855, 35.5593,11.8700, 0.0500)
θ1 1.275 1.617 2.468 B3(3.6999, 3.9108, 16.4841, 9.0300, 0.0740)
θ2 1.056 1.314 1.953 B3(4.9871, 4.1479, 16.5432, 6.4500, 0.0600)

θ0, θ1 0.687 0.827 1.161 B3(4.6368, 6.6727, 7.1680, 3.6356, 0.0521)
θ0, θ2 0.633 0.753 1.037 B3(3.0467, 5.9239, 5.0944, 2.7870, 0.1000)
θ1, θ2 0.696 0.842 1.194 B3(6.9638, 4.5238, 17.7792, 3.8000, 0.0522)

θ0, θ1, θ2 0.494 0.582 0.786 Sb(3.9578, 1.6861, 2.5760, 0.0547)

Table 5.2. Percentage points and models of the limiting distributions of
statistics of the non-parametric goodness-of-fit tests when ML method is used

for parameter estimation (θ1= 1)

In this chapter, a “real-time” ability is implemented by the use of parallel
computing to simulate and research the distributions of test statistics in the case of
testing a composite goodness-of-fit hypothesis (for distributions with estimated
parameters). It makes it possible to make correct statistical inferences even in those
situations when the distribution of the test statistic is unknown (before the testing
procedure starts).
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Parameters estimated Percentage points Model
0.9 0.95 0.99

The Kolmogorov test
θ0 1.150 1.279 1.538 B3(5.0155, 5.4869, 3.3992, 2.2476, 0.3000)
θ1 1.084 1.199 1.427 B3(5.4860, 5.9744, 3.4348, 2.1402,0.3000)
θ2 0.892 0.968 1.121 B3(4.6527, 7.8624, 1.8636, 1.4770, 0.3110)

θ0, θ1 0.992 1.095 1.301 B3(37.6836, 9.6249, 24.7703, 4.2400, 0.1000)
θ0, θ2 0.823 0.895 1.041 B3(6.6694, 6.5961, 3.0264,1.3700, 0.2650)
θ1, θ2 0.807 0.877 1.020 B3(5.3859, 8.4947, 2.3199, 1.4900, 0.2850)

θ0, θ1, θ2 0.751 0.811 0.932 B3(5.7236, 7.0743, 2.3212, 1.1488, 0.2714)
The Cramer–von Mises–Smirnov test

θ0 0.286 0.383 0.620 Sb(3.4745, 1.1215, 2.1611, 0.0065)
θ1 0.227 0.296 0.466 B3(8.0420, 2.6222, 50.1417, 1.3950, 0.0000)
θ2 0.135 0.167 0.240 B3(9.8988, 3.6331, 27.2342, 0.6611, 0.0000)

θ0, θ1 0.167 0.215 0.334 Sb(3.6343, 1.2549, 1.1752, 0.0074)
θ0, θ2 0.100 0.121 0.172 B3(4.9109, 4.8805, 11.3991, 0.5400, 0.0058)
θ1, θ2 0.099 0.121 0.174 B3(9.7955, 5.0455, 35.0176, 0.9000, 0.0000)

θ0, θ1, θ2 0.078 0.094 0.133 B3(4.2414, 3.7719, 8.6839, 0.2744, 0.0087)
The Anderson–Darling test

θ0 1.556 2.040 3.234 B3(4.3943, 2.4670, 38.0035, 10.7000, 0.0900)
θ1 1.279 1.625 2.478 B3(5.3689, 3.2667, 21.3222, 6.8675, 0.0535)
θ2 0.900 1.096 1.572 B3(3.5132, 4.3501, 8.8168, 4.2500, 0.1000)

θ0, θ1 0.871 1.088 1.623 B3(5.6254, 3.7452, 20.0868, 4.9237, 0.0588)
θ0, θ2 0.619 0.737 1.015 B3(7.1939, 6.8828, 3.2613, 1.5626, 0.2598)
θ1, θ2 0.640 0.769 1.072 B3(30.1793 ,4.4373, 60.5986, 3.2000, 0.0000)

θ0, θ1, θ2 0.483 0.568 0.773 B3(5.2772, 4.4958, 7.9102, 1.5891, 0.0664))

Table 5.3. Percentage points and models of the limiting distributions of
statistics of the non-parametric goodness-of-fit tests when the ML method is

used for parameter estimation (θ1= 3)

5.3. Testing composite hypotheses in “real-time”

In this chapter, we propose an approach that is based upon the software, that is
being developed by authors, and the use of simulation [LEM 11e, LEM 11].
Computational processes in the simulation of distributions of statistics of various
tests can be parallelized rather easily by the use of available resources of nearby
computer network. This makes it possible to dramatically reduce the time required to
simulate (study) an unknown distribution G(S|H0) of statistic. Statistical analysis is
carried out by the scheme in Figure 5.3 in the case of the use of non-parametric
goodness-of-fit tests for testing composite hypotheses in regard to the distributions,
for which the statistic distributions depend on parameter values. Such an approach
was used in [LEM 10b] and [LEM 11d]. Here, the study of G(S|H0) is carried out in
“real time” of testing the hypothesis [LEM 11c].
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Parameters estimated Percentage points Model
0.9 0.95 0.99

The Kolmogorov test
θ0 1.131 1.256 1.506 B3(5.0752, 5.5757, 3.3089, 2.1797, 0.3000)
θ1 1.084 1.199 1.427 B3(3.8892, 6.2974, 2.5413, 2.1402, 0.3400)
θ2 0.890 0.966 1.119 Sb(2.1569,1.8555, 1.6361, 0.2661)

θ0, θ1 1.024 1.133 1.352 B3(14.6423, 5.3789, 9.0355, 2.1287, 0.2000)
θ0, θ2 0.839 0.914 1.068 B3(5.1515, 6.1071, 2.8573, 1.3900, 0.3000)
θ1, θ2 0.833 0.909 1.065 B3(7.3590, 7.0743, 3.0755, 1.4500, 0.2450)

θ0, θ1, θ2 0.769 0.834 0.970 B3(4.0431, 7.9330, 1.6664, 1.2059, 0.3007)
The Cramer–von Mises–Smirnov test

θ0 0.269 0.359 0.578 Sb(3.4774, 1.1443, 1.9761, 0.0066)
θ1 0.227 0.296 0.466 B3(7.2936, 2.6369, 40.7763, 1.2800, 0.0000)
θ2 0.135 0.166 0.240 B3(6.9544, 4.2952, 17.0098, 0.7100, 0.0000)

θ0, θ1 0.186 0.242 0.379 B3(10.0457, 2.7234, 74.1688, 1.4000, 0.0000)
θ0, θ2 0.104 0.127 0.182 B3(10.3993, 4.2771, 25.5455, 0.5600, 0.0000)
θ1, θ2 0.104 0.128 0.186 B3(5.2006, 4.4814, 13.7165, 0.5770, 0.0050)

θ0, θ1, θ2 0.082 0.099 0.141 B3(4.3747, 3.2066, 9.2236, 0.2479, 0.0088)
The Anderson–Darling test

θ0 1.484 1.934 3.047 B3(12.5725, 2.7914, 75.0000, 9.6500, 0.0000)
θ1 1.279 1.625 2.478 B3(6.9691, 2.9121, 32.3978, 6.8675, 0.0535)
θ2 0.895 1.090 1.556 B3(16.0792, 4.1280, 41.0115, 4.9000, 0.0000)

θ0, θ1 0.958 1.213 1.838 B3(5.9821, 3.4306, 23.7037, 5.4000, 0.0500)
θ0, θ2 0.632 0.754 1.043 B3(19.4692, 4.7303, 32.4566, 2.8950, 0.0000)
θ1, θ2 0.645 0.776 1.087 B3(19.2831, 4.8148, 37.5002, 3.4100, 0.0000)

θ0, θ1, θ2 0.496 0.587 0.805 B3(5.9771,4.3144,9.7987,1.7085,0.0619)

Table 5.4. Percentage points and models of the limiting distributions of
statistics of the non-parametric goodness-of-fit tests when ML method is used

for parameter estimation (θ1= 4)

When the composite hypothesis H0 : F (x) ∈ {F (x, θ), θ ∈ Θ} is tested by an
existing sample x1, x2, . . . , xn, the parameter vector estimate θ̂ for the distribution
F (x, θ) is found in accordance with the selected method (MLE, in the case). Then,
the value of statistic S∗ of the goodness-of-fit test in use is calculated in accordance
with the estimate θ̂ found. To make an inference on whether to reject or to accept the
hypothesis H0 under test, it is necessary to know the distribution G(S|H0) of the test
statistic that corresponds to the parameter value θ̂.

After that, a statistical simulation procedure is started that results in obtaining
empirical distribution GN (Sn|H0) of the test statistic for the corresponding sample
size n, the given number of simulations N and the parameters vector θ = θ̂ of F (x, θ).
We can find an estimate of an achieved significance level P{Sn > S∗} or estimates
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of percentage points by the use of empirical distribution GN (Sn|H0). The hypothesis
is not rejected if P{Sn > S∗} > α, where α is the given type I error probability.

Parameters estimated Percentage points Model
0.9 0.95 0.99

The Kolmogorov test
θ0 1.104 1.223 1.461 B3(5.0453,5.6018,3.3300, 2.1145, 0.3100)
θ1 1.084 1.199 1.427 B3(5.3655, 6.0543, 3.3092, 2.1402, 0.3000)
θ2 0.955 1.047 1.231 B3(8.8643, 20.9468, 7.9001, 9.1000, 0.2300)

θ0, θ1 1.066 1.180 1.409 Sb(2.4625, 1.7390, 2.3814, 0.2668)
θ0, θ2 0.895 0.980 1.153 B3(4.2520, 7.5684, 2.1829, 1.6786, 0.3100)
θ1, θ2 0.902 0.991 1.169 B3(4.5096, 5.6482, 3.0218, 1.6000, 0.3100)

θ0, θ1, θ2 0.839 0.918 1.079 B3(8.5291, 6.5470, 4.4062, 1.6000, 0.2400)
The Cramer–von Mises–Smirnov test

θ0 0.246 0.323 0.516 B3(7.5042, 2.4317, 48.3146, 1.4000, 0.0000)
θ1 0.227 0.296 0.466 B3(6.2641, 2.8729, 33.7742, 1.3750, 0.0000)
θ2 0.156 0.196 0.290 B3(4.1621, 3.9072, 14.0226, 0.8986, 0.0059)

θ0, θ1 0.213 0.278 0.441 Sb(3.4488, 1.2020, 1.4196, 0.0061)
θ0, θ2 0.122 0.151 0.223 B3(7.9405, 3.8743, 23.4697, 0.6700, 0.0000)
θ1, θ2 0.124 0.155 0.234 B3(7.5192, 4.0675, 25.1497, 0.7945, 0.0000)

θ0, θ1, θ2 0.010 0.123 0.181 B3(5.5784, 3.2913, 17.0579, 0.4290, 0.0067)
The Anderson–Darling test

θ0 1.380 1.778 2.770 Sb(3.7593, 1.3295, 9.6362, 0.0552)
θ1 1.279 1.625 2.478 B3(4.8031, 3.4732, 17.6302, 6.8675, 0.0535)
θ2 0.972 1.193 1.724 B3(3.4890, 4.7102, 10.2828, 5.9597, 0.0800)

θ0, θ1 1.111 1.420 2.184 B3(5.4232, 3.1894, 26.3229, 6.7000, 0.0539)
θ0, θ2 0.692 0.835 1.178 B3(11.9769, 4.7144, 19.2233, 3.0000, 0.0000)
θ1, θ2 0.701 0.852 1.225 B3(22.3537, 4.1744, 51.2639, 3.6000, 0.0000)

θ0, θ1, θ2 0.563 0.677 0.955 B3(8.0353, 3.9949, 18.1724, 2.4000, 0.0500)

Table 5.5. Percentage points and models of the limiting distributions of
statistics of the non-parametric goodness-of-fit tests when ML method is used

for parameter estimation (θ1= 7)

The value of N defines the required accuracy of simulation of G(Sn|H0).
However, the time spent for simulation increases along with the growth of N ;
therefore, we can determine N during parallelization of simulation process on the
basis of available computer resources (number of processors and cores) that could be
used for the problem under solution.

The probability that elements of θ̂ are integer is zero. Thus, we should cautiously
use models and percentage points of test statistic distributions for values of
parameters close to integer values provided in [LEM 07a, LEM 09a, LEM 09b,
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LEM 10a, LEM 10b and LEM 10c] as, with interpolation applied, results obtained
can be far from the true distribution G(S|H0) with the given θ̂.

Parameters estimated Percentage points Model
0.9 0.95 0.99

The Kolmogorov test
θ0 1.100 1.218 1.454 B3(8.0781, 4.8128, 5.8094, 2.0960, 0.2735)
θ1 1.084 1.199 1.428 Sb(2.4326, 1.7778, 2.3797, 0.2673)
θ2 0.978 1.074 1.266 B3(8.4485, 5.1812, 5.5890, 1.8364, 0.2700)

θ0, θ1 1.072 1.186 1.417 B3(5.7833, 6.1641, 3.2903, 2.1269, 0.2699)
θ0, θ2 0.911 0.999 1.179 Sb(2.6863, 1.8734, 2.0545, 0.2559)
θ1, θ2 0.929 1.012 1.198 Sb(2.6357, 1.8244, 2.0497, 0.2612)

θ0, θ1, θ2 0.863 0.948 1.117 B3(11.1281, 6.1031, 6.0962, 1.7021, 0.2200)
The Cramer–von Mises–Smirnov test

θ0 0.242 0.319 0.507 B3(4.5895, 2.5584, 15.2153, 0.8500, 0.0000)
θ1 0.228 0.296 0.467 B3(6.0112, 2.5379, 23.0339, 0.8900, 0.0000)
θ2 0.166 0.209 0.314 B3(5.8877, 4.0329, 23.3907, 1.2150, 0.0000)

θ0, θ1 0.217 0.284 0.450 Sb(3.4552, 1.1997, 1.4606, 0.0061)
θ0, θ2 0.128 0.160 0.239 Sb(4.6035, 1.4434, 1.3182, 0.0060)
θ1, θ2 0.131 0.165 0.252 Sb(4.4612, 1.4003, 1.3183, 0.0059)

θ0, θ1, θ2 0.107 0.134 0.201 B3(6.9845, 2.7596, 2.6920, 0.4000, 0.0060)
The Anderson–Darling test

θ0 1.363 1.752 2.722 B3(5.6824, 4.0065, 18.9636, 8.4000, 0.0000)
θ1 1.279 1.624 2.477 Sb(3.4000, 1.3163, 7.4752, 0.0535)
θ2 1.005 1.240 1.799 B3(3.4843, 5.3032, 9.1592, 6.2767, 0.0800)

θ0, θ1 1.139 1.457 2.243 B3(6.3736, 2.8599, 35.0312, 6.7458, 0.0538)
θ0, θ2 0.713 0.864 1.227 B3(4.6820, 5.7296, 7.8880, 3.4597, 0.0523)
θ1, θ2 0.722 0.881 1.275 B3(4.3613, 6.0352, 7.6499, 3.8116, 0.0520)

θ0, θ1, θ2 0.589 0.714 1.009 B3(7.9147, 4.0088, 21.3294, 2.9120, 0.0500)

Table 5.6. Percentage points and models of the limiting distributions of
statistics of the non-parametric goodness-of-fit tests when ML method is used

for parameter estimation (θ1= 8)

Let us consider an example where a composite hypothesis is tested in regard to the
IGD with the density function:

f(x) =

(
θ1

2πx3

/1/2

exp

(
−θ1(x− θ0)

2

2θ20x

/
.

In this case, distributions G(S|H0) of the non-parametric tests depend on specific
values of θ0 and θ1.
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Figure 5.3. Testing the composite hypothesis H0 : F (x) ∈ {F (x, θ), θ ∈ Θ}

The following is the sample under analysis:

0.278 0.633 0.928 1.078 1.334 1.937 2.297 2.630 3.554 5.674
0.312 0.686 0.933 1.080 1.497 1.965 2.362 2.919 3.593 5.989
0.358 0.716 0.936 1.089 1.612 1.991 2.364 2.995 3.948 6.284
0.361 0.776 0.938 1.113 1.671 2.012 2.417 3.002 3.996 6.863
0.362 0.777 0.956 1.119 1.680 2.026 2.467 3.120 4.053 7.580
0.374 0.789 0.996 1.159 1.687 2.027 2.566 3.149 4.141 7.644
0.403 0.796 1.038 1.165 1.731 2.069 2.577 3.166 4.363 7.874
0.590 0.805 1.053 1.166 1.735 2.146 2.599 3.224 4.597 9.236
0.597 0.822 1.060 1.192 1.763 2.210 2.621 3.278 5.022 11.704
0.599 0.849 1.066 1.245 1.898 2.213 2.628 3.528 5.201 20.069

ML estimates of parameters calculated are θ̂0 = 2.4706 and θ̂1 = 2.5769. Values
of test statistics and achieved significance levels (p-values) obtained by simulated (in
“real time”) test statistic distributions under different values of N are given in
Table 5.7.

Parameters estimated S∗ P{Sn > S∗}
N = 1,000 N = 5,000 N = 10,000 N = 100,000 N = 1,000,000

K 0.59361 0.6380 0.6532 0.6535 0.6552 0.6556
CMS 0.05380 0.5390 0.5550 0.5555 0.5582 0.5582
AD 0.35021 0.5280 0.5498 0.5496 0.5485 0.5480

Table 5.7. P-values of different tests under different volumes of simulation

It should be noted that distributions of non-parametric goodness-of-fit test statistics
[5.1–5.3] for θ̂0 = 2.4706 and θ̂1 = 2.5769 differ substantially from corresponding
distributions under different combinations of integer values of θ0 and θ1.
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5.4. Conclusions

In this chapter, implementation of a software has been discussed, which makes it
possible to test composite hypotheses with the use of non-parametric goodness-of-fit
tests in the cases when statistic distributions depend on specific values of the observed
distributions.

The interactive mode is implemented for the Kolmogorov, the CMS and the AD
tests, as well as the Kuiper test [KUI 60], the Watson test [WAT 61] and the test by
Zhang et al. [ZHA 02, ZHA 05, ZHA 06].
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