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STATISTICAL A N A L Y S I S  O F  O N E - D I M E N S I O N A L  

O B S E R V A T I O N S  F R O M  PARTIALLY GROUPED DATA 

B. Yu. Lemeshko and S. N. Postovalov 

Software to choose the distribution law that best describes sampled data is a further development of the program 

"System for Statistical Analysis of One-Dimensional Observations of Random Quantities" [1]. The functions of the software 

make it possible to estimate the parameters and check them for compatibility on the basis of 26 of the distributions most 

commonly used in practice and mixtures of those distributions. 

The nature  of the sampled data used to analyze the distributions may differ.  The most general case is a partially 

grouped sample [2]: A sample is not  g rouped  if the sampled values represent individual values of observations from the domain 

of definition of a random quantity. The sample is grouped ,  if the domain of definition of the random quantity is divided into 

k nonintersecting intervals by the boundary points 

X o ~ X I ~  -~. X,~-I ~Xlc, 

where x o is the lower side of the domain of definition of a random quantity ~, x k is the higher side of the domain of definition 

of ~, and the number n i of observations in the i-th interval of values. A sample is par t ia l l y  g r o u p e d  if the available information 

is linked to many nonintersecting intervals, which divide the domain of definition of the random quantity so that each interval 

is one of two types: 

a) the i-th interval is of the first type if n i is known, but the individual values Xij , j = 1, n i, are unknown; 

b) the i-th interval is of the second type if n i and all individual values xij, j = 1, ni, are known. 

The domain of definition of a random quantity in this case can be represented as X = X(1 ) U X(2 ), where X(1 ) is the 

set of intervals of the first type and X(2 ), of the second type. 

When we have to choose the distribution with which our experiments are most compatible, the sequence of our actions 

is described by the following algorithm. 

We limit the class of distributions from which we choose the appropriate law of probability distribution. 

Next, for the chosen distributions we estimate the parameters and verify the compatibility hypothesis. 

We choose the distribution that is most compatible with the sample. 

The generally accepted procedure for verifying hypotheses by the compatibility test is used. When a compatibility 

hypothesis with a given distribution is not refuted if the calculated value of the statistic is less than a critical value that 

corresponds to a prescribed significance level a,  it usually turns out that there is no reason to discard a number of distributions. 

Several possible alternatives remain in that case. We should not dwell on a distribution for which the compatibility is best. 

When hypotheses are verified for compatibility with the statistic used S i, i = 1, m, the software described calculates 

QO 

probabilities of the form P { S  i > S i } = gi(s)ds,  where S i is the value found from the sample for the pertinent statistic, gi(s)  

s i 

is the distribution density function of the statistic S i, provided that the hypothesis H 0 is true, S i is a functional that depends 

on the specific sample and the distribution law, i.e., S i = S i (X,  f i x ,  0)),  where X denotes a sample of a random quantity. 
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Fig. 1. Results of analysis in the presence of an "anomalous" observation. 
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Fig. 2. Results of working estimation. 

Suppose that on the basis of the initial assumptions we distinguished a set of distribution laws, to which the sample under 
A 

consideration belongs, numbered those laws, using R to denote the set of indices of the density functions 3~(x, 0 ), j E R, 
* * - -  A 

estimated the distribution law parameters from the given sample, and calculated the statistic S i j  = S i (X, fj(x, 0 )) and the 
probability P { S  i > S i j  } = c~/j. Then during verification of the compatibility hypothesis with the j-th distribution by means of 
the i-th test, if eqj > ce, where ~ is the significance level set by the researcher, there is no reason to refute the compatibility 
hypothesis with the j-th distribution in accordance with the i-th test. Suppose that according to the tests used there are no 
grounds for refuting the compatibility hypothesis with the set of laws labeled with indices from R 1 C R. We should then choose 

the same distribution law of the random quantity f/(x, ~ ) ,  for which ¥i  Otil = max oqj. 
j e R  1 
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Usually such a conclusion can be made unambiguously. It is entirely possible, however, (quite often for different but 

similar distribution laws) that the conclusions from different tests indicate the predominance of one law or other. This means 

that the solutions of the problem of choosing a distribution by various tests are not compatible. Such "incompatibility" is 

attributed to the difference in measures used in the tests. Hence we have a natural multiple-test problem for adopting a solution. 

Since all the tests are measured on the same scale, the problem can be solved by fashioning a simple compromise test of the 
m m 

form max ~ w iceij, where ~i is the weight coefficient of the i-th test, ~ 6o i = I. 
j e R 1  i = 1 i= 1 

When solving problems of statistical analysis, in particular when calculating estimates of the distribution parameters, 

the presence of anomalous measurements in the sample becomes extremely important. In the practice of solving such problems 

it is widely known that even a singly anomalous observation leads to estimates that are not at all compatible with the sample 

data. Generally speaking, the existence of spikes affects the quality of all the conclusions. 

Understandably, every researcher hopes that the estimates have the least possible sensitivity to anomalous observations. 

Otherwise, before proceeding to make the estimate it is necessary to use a procedure to eliminate gross errors of measurement, 

which spills over into a rather complicated problem. In the given case we must emphasize the merit of the estimates that use 

grouping of the initial sample data, since obviously they are less sensitive to random spikes. When sample grouping is employed 

the influence of anomalous observations can be decreased sharply and the influence of random spikes can sometimes be 

eliminated altogether. 

Let us demonstrate this with the following example. We model a sample by means of a normal law with zero 

mathematical expectation and a single variance, consisting of 500 observations, was modeled. From it we found estimates of 

the maximum likelihood: ~ = 1.027 and cr = 1.017. Then in this sample we increased the first observation by 20 and carried 

out the appropriate analysis again. The results are shown in Fig. 1. As was to be expected, the estimate of the mean-square 

deviation changed most. Compatibility with all tests is rejected. 
Next, we grouped a sample with an "anomalous" observation, made an estimate from the grouped sample, and checked 

for compatibility. The results are shown in Fig. 2. As we see, the "random" error in the data had almost no effect on the 

estimate of the parameters. 

The number of models used to describe real random quantities can be increased substantially by using mixtures of 

distributions. The distribution function of a mixture of s distributions has the form 

F ( x ) =  ~ w i F i ( x ,  Oi), ~ . w i = l ,  
i : :  i ,' 1 

where s is the number of distributions in the mixture, w i are the mixture parameters, F i is the i-th distribution function, and 

0 i is the vector of its parameters. When the mixture parameters lie in the interval [0, 1], we have a classical mixtures (Fig. 

3), which is obtained, e.g., by combining samples. If a parameter ~o i ~ [0, 1], then one of the distributions enters the mixture 

with a minus sign and, hence, is subtracted from the other distributions. 

When a real sample is indeed a mixture of observations, good results are obtained when the sought law of mixture of 

distributions is used. 

As already stated, the compatibility hypothesis is verified by the Pearson chi-square (x 2) test, the sequential probability 

ratio test, the Kolmogorov test, the Smirnov test, and the Mises ~02 and ~ 2  tests. 

The parametric Pearson X 2 test and the sequential probability ratio test provide for grouping of data. The fact that 

asymptotically optimal grouping, in addition to uniform and equiprobable grouping, is used in the software developed ensures 

maximum power of the sequential probability ratio and Pearson X 2 tests when the competing hypotheses are competitive [1] 

and minimum asymptotic variance when the parameters are estimated from grouped data. 

Construction of asymptotically optimal boundary points of intervals involves solution of the problem 

max det34r (0), 
x < . r ~ < . . . x ~ _  1 < . r  ~ 

K 
A ~ A ~ A A 

where Mr(O ) = ~ (VPi(O )VIPi(O )/(Pi(O ) is the Fisher information matrix, and Pi(O) = 
/ = 1  

falling within a particular interval. 

x i 

I f(x, O)dx is the probability of 

X i - i  
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Fig. 3. Estimation of  the parameters and verification of  the compatibility hypothesis 

for a mixture of  two normal distributions by means of  a grouped sample. 

The nonparametric Kolmogorov,  Smirnov, and Mises o~ 2 and f~2 tests are difficult to apply when the initial data 

constitute a grouped or partially group sample [3], since the values of  the respective statistics are unknown. The following 

approach is proposed for such cases. The upper and lower estimates are found for each statistic and statistical conclusions are 

made on the basis o f  the upper and lower limits of  the probability of  compatibility. 

The statistic corresponding to the Kolmogorov test has the form 

D,. = sup I F= (x) - - F  (x)  I, 

where Fn(X ) is an empirical distribution function, F(x) is the theoretical distribution function, compatibility with which is being 

checked, and n is the sample size. 
Given a partially grouped sample, we  introduce the notation 

Ni= {.~rlj, N_I=0  , N0=rto, N r - l = n ,  Nij=Ni+j. 
} = i  

The empirical distribution function Fn(X) is fully defined for intervals of  the second type, 

F~ (x) =Nt-lj/n, 

and also at all boundary points Xi, i = 0 . . . . .  r: 

Vx~[xij, x~,j+~)___[xi, x~+,)=_Xc2~, j = l  . . . . .  n~, 

( xi,,, t--1 =-- xi41 ), 

.1=,, (Xi) = N i-l/tz. 

In intervals of  the first type we know only that 

G; ix) =Ni_dn<_l%. (x) ~N,tn.= G+~ Ix), x~[xi, xi+])~Xol. 
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Fig, 4. Verification of the compatibility of  the normal distribution with parameters 

/x -- O. 1 and a = 1.1 by means of  grouped data. 

We can limit D n from below as follows: 

D~ = sup [F,~ (x) - - F  (x) ] = max{sup] F,, (x) - - F  (x)1, sup i F,, (x) - - F  (x) [}, 
x X(I) X~2) 

D, ~ max{maxlNi-l /n--F (xi) [, sup I F,, ( x ) - - F  (x) [ } = D ~ .  
i=0, . . . / ;  2';(21 

+ 
Next we find the upper estimate. The functions G K (x) and G-~(x) are constructed so that vx E X(1 ) G~(x) <_ Fn(x) 

+ 
-< GK (x). Then 

6 7 ( x ) - - F  (x )  _< F ~  ( x ) - - F  (x )  _< a 2 ( x ~ - - ~ :  ( x ) ,  

F (x)--G+ (x) ~<-F (x ) - -F .  (x) < F (x)- -G ~- (x). 

Next, upon denoting A = {x E X(1): Fn(x ) >_ F(x)} and B = {x E X(1): Fn(x ) <: F(x)}, we find that 

D~=max{sup(Fn(x)- -E(x)  ), sup (F(x)--F,~(x)),  suplF~(x)- -F(x)  [}, 
A_~X(1) B~,'(t 1 ) X(2) 

D ~ m a x { s u p ( G + ( x ) - - F ( x ) ) ,  s u p ( F ( x ) - - G [ ( x ) ) ,  suplF~,(x)--F(x)l},  
A ~ X ( I )  B ~A'¢I ) X(2) 

D , ~ m a x { s u p I G  + (x)- -F (x) [, supiF ( x ) - - G ;  (x)1, 
XO)  x d )  

suplFn(x)- -F(x)  [ } = D ~ .  
A'(2) 

Hence, DnK <_ D n <_ DnK and, since the distribution function increases monotonically we have Pmin -< P ~ Pmax, 

where p = t - -  K(g(Dn) ), Pmin = 1 - -  K(g(DnK)), Pmax = 1 -- K(g(Dn~)), K(X) is the Kolmogorov distribution function, and 

g(y) = ,](6ny + 1)2/36n [3]. 

Similar estimates were obtained for the other statistics. 
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The following conclusions, therefore, can be made for the tests under consideration, for the given significance level 

c~: the compatibility hypothesis must be put aside ifPmax <-- c~: the compatibility hypothesis must not be rejected ifPmin > c~. 

Figure 4 shows an example with a normal distribution. The step functions denote the upper and lower limits for the 

unknown empirical distribution function. For a given significance level c~ = 0.15 the hypothesis of compatibility with a normal 

distribution having the parameters/~ = 0.1 and o = 1.1 passes the Pearson X 2, sequential probability ratio, and Mises ~o 2 and 

ffl tests and is rejected by the Kolmogorov and Smirnov tests. 
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