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Abstract—The results of numerical studies of the effect of roundoff errors on the distribution of
test statistics of statistical hypotheses are presented. The effect of the roundoff on the distribution
of statistics of different goodness-of-fit and homogeneity tests is investigated. It is shown that,
when the roundoff errors in the analyzed samples are comparable with the standard deviation of the
measurement errors, the distribution of test statistics may vary significantly. Under such conditions
the application of a test in the systems of data processing using the classical results may lead to false
conclusions. The recommendations for resolving this issue are proposed.
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1. INTRODUCTION

In the analysis of measurement results coming from different sources, statistical methods are
often used to decide whether the previously observed laws in the systems of data processing remain
unchanged. For these purposes various criteria for testing statistical hypotheses may be applied.

Any measurements are accompanied by the roundoff error depending on the resolution of measure-
ment system, including the characteristics of used sensors and analog-to-digital transducers. It is clear
that the presence of roundoff has an impact on the results of application of statistical methods, and the
effect of such errors may in some situations lead to false statistical conclusions.

It was noted in [1] that there may occur problems in application of normality tests and these problems
are consequence of roundoff. The effect of roundoff errors on the real significance value was shown
in [2, 3] with the use of example tests of hypotheses about the equality of mathematical expectation and
variance to the nominal values and about Student’s t-test on homogeneity of mean values and Fisher’s
criteria about the homogeneity of variances of two samples; in addition, it was pointed out that, as
they increase, the power of tests decreases. It was noted in [4] in the analysis of a set of samples with
repeating observations that in this situation the critical values of the distributions of statistics of non-
parametric goodness-of-fit tests in checking composite hypotheses relative to the generalized Pareto
distribution are different from those presented in [5]. However, in these works it was not discussed how
the distributions of test statistics change as the roundoff errors increase.

The majority of existing tests are intended to test statistical hypotheses with respect to continuous
random values. This assumption seldom is a focus of attention, but it determines correctness of
application of the corresponding tests. When this assumption is satisfied, there cannot be repeated
values in samples. In real situations, due to roundoff errors this assumption is often violated, which is
typical for medical and biological experiments, where, because of their special character, the roundoff
errors may be particularly large. This also concerns the results of high-precision measurements, in
which only the last decimal sign is varied, which is related with the resolution of the used measurement
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system. In automated systems of data processing, one usually deals with rounded measurement results
received from different sensors.

Let us explain what are the consequences of application, for instance, of the goodness-of-fit test,
where the statistic takes into account the deviation of the empirical distribution from the theoretical one
if the measurement results are rounded off with some Δ.

Suppose, to check a simple hypothesis H0: Fn(x) = F (x), where Fn(x) is the empirical distribution
constructed by the sample x1, x2, . . . , xn of size n, we apply the goodness-of-fit test with statistic S.
Suppose that there exists a limit distribution G(S|H0) of the statistic for this test. When H0 is true,
the empirical distribution Fn(x), corresponding to the sample of continuous random values (without
roundoff), converges to the distribution function F (x) of this random value for n → ∞. The empirical
distribution GN (Sn|H0) of statistic, constructed by the samples, will converge to the limit distribution
of this statistic for n → ∞ and for the number of experiments N → ∞.

If the assumption of continuity of the observed random variable is violated and the measurement
results are rounded off with some Δ, then, starting from some n (dependent on the form of F (x), on
the domain of definition of random value, and on Δ), max |Fn(x)− F (x)| stops decreasing, and the
distribution GN (Sn|H0) will deviate from the limit one G(S|H0) as n increases (the larger is Δ, the
lower n is needed to make this deviation significant).

It was studied in [6] in testing simple and composite hypotheses how the distributions of statistics
of the goodness-of-fit tests of Kolmogorov, Cramér–Mises–Smirnov, and Anderson deviate from the
corresponding limit distributions in dependence on Δ as n increases. The picture similar to [6] (in
the case of large samples) is also observed for a wide variety of criteria. To use the classical results
in application of statistical tests under the conditions of large samples, it is recommended in [6] to
restrict the amounts of the extracted samples by the value nmax, at which the real distribution of statistic
G(Snmax |H0) is still practically identical to G(S|H0). The assessment of the value nmax for the applied
test in a specific situation is not problematic.

In many applications it is typical when relatively many repeated observations appear in the analyzed
samples due to roundoff. It is explained by the fact that the roundoff error is comparable with the
standard deviation of the distribution law of the measurement error. In these situations the real
distributions G(Sn|H0) of test statistics (at the roundoff error Δ) may be significantly different from
the limit distributions G(S|H0) or from G(Sn|H0), which occur in the case without rounding off the
measurements.

In [7–10] the results of studying real properties of various groups of tests are presented without
account for the effect of the roundoff errors on these properties. In the current case, exemplified by
different tests, using the methods of statistical modeling, we show (i) how the roundoff error may
influence the distribution of test statistics for testing various hypotheses at relatively small sizes of
samples and (ii) what must be done to provide correctness of statistical conclusions in application of tests
in these conditions. To conduct the investigations, it is implemented in the computational system [11],
in which the list of tests slightly exceeding the number of tests covered in [7–10], is represented, that it is
possible to apply this list and model the distributions of statistics of corresponding tests under conditions
of violation of the standard assumption about continuity (at a given roundoff error Δ).

The proposed work is aimed at two goals. Firstly, we aim to show that the presence of roundoff errors
often lead to the situations where the use of classical results concerning the criteria for testing statistical
hypotheses appears to be absolutely impossible. Secondly, we aim to demonstrate the possibility of
correct application of tests also in such situations.

For determinacy (and without loss in generality), in the performed studies we rely on the sets modeled
according to the standard normal law N(0, 1), but for different roundoff errors. At the roundoff with
Δ = 1, in the samples belonging to N(0, 1) there may occur 9 unique values, and at the roundoff with
Δ = 0.1 there may occur approximately 86 unique values, at Δ = 0.01 there are approximately 956
values, and at Δ = 0.001 there are approximately 9830. In the case when the sample belong to the
law N(μ, σ), the dependences demonstrated below have the same form at the roundoff error Δσ. The
picture does not change qualitatively for the laws different from the normal one.
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2. EFFECT OF THE ROUNDOFF ON THE VARIATION IN PROPERTIES
OF GOODNESS-OF-FIT TEST

The statistic of Pearson’s χ2 test has the form

X2
n = n

k∑

i=1

(ni/n− Pi(θ))
2

Pi(θ)
, (1)

where ni is the number of observations falling into the ith interval, Pi(θ) =

xi∫

xi−1

f(x, θ)dx are the proba-

bilities of falling into the interval that correspond to the theoretical law with the density function f(x, θ).
When the simple checked hypothesis H0 is true (at known θ), χ2

k−1-distribution is the asymptotic
distribution of statistic.

In Fig. 1 we show how the distribution of statistic (1) of Pearson’s test varies depending on the degree
of rounding off Δ in testing simple hypothesis about the goodness-of-fit with the normal law at n = 100
and at the number of equally probable intervals k = 10.

At such amount of samples and at Δ = 0.01σ, the distribution of statistic X2
n is practically identical

to χ2
9-distribution, but already at Δ = 0.05σ the difference becomes significant. As n increases, the

picture presented in the figure extends from the χ2
9-distribution and shrinks to the χ2

9-distribution with
decreasing n.

The variations in distributions of statistics of non-parametric goodness-of-fit tests [12] of Kol-
mogorov (K) [13], Cramér–Mises–Smirnov (CMS) [14], Anderson–Darling (AD) [15, 16],
Kuiper (Ku) [17], Watson (W) [18, 19] show similar behavior dependent on the degree of roundoff;
the same holds for the distributions of the Zhang [20] test statistics which are dependent on the sample
size. Let us show it exemplified by the Cramér–Mises–Smirnov criterion with statistic of the form

Sω =
1

12n
+

n∑

i=1

{
F (xi, θ)−

2i− 1

2n

}2

. (2)

When the simple hypothesis is valid in the situation where the roundoff errors may be ignored, the
distribution of statistic (2) rapidly converges to the limit distribution a1(s) [14] (we may ignore the
deviation from the limit distribution already for n > 25 [7]).

With the roundoff, as n increases, the distribution of the stastistic begins to deviate from a1(s) [6].
The deviation of the distribution of statistic (2) from a1(s) is presented in [12] at n = 1000 in dependence

Xn
2

3
42

1

7

5

6

G(Xn
2�H0)

5 10 15 20 25 30 35 40 45 50

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0

Fig. 1. Dependence of distributions of statistic (1) on Δ at n = 100: (1) without roundoff, coincides with χ2
9-

distribution; (2) at Δ = 0.01σ; (3) at Δ = 0.05σ; (4) at Δ = 0.1σ; (5) at Δ = 0.2σ; (6) at Δ = 0.3σ; (7) at Δ = 0.5σ.
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Fig. 2. Dependence of distributions of statistic (2) on n at Δ = 0.5σ: (1) distribution a1(S); (2) for n = 10; (3) for
n = 20; (4) for n = 30; (5) for n = 40; (6) for n = 50; and (7) for n = 100.

on the roundoff error value. When the degree of roundoff Δ is significant, the distribution of statistic (2)
may considerably deviate from a1(s) also for rather small n. As a confirmation, in Fig. 2 we show the limit
distribution a1(s) of statistic (2) and the empirical distributions G(Sω|H0) of this statistic for different
sample sizes n at Δ = 0.5σ.

3. EXAMPLE

Let us show how the results of testing a simple hypothesis that the sample 1.05; 1.10; 0.95; 0.90; 0.95;
1.05; 0.95; 0.95; 1.00; 1.05; 1.05; 0.90; 1.00; 1.10; 0.85; 1.10; 1.00; 1.00; 0.95; 1.00; 0.85; 0.95; 0.95;
1.10; 1.10; 1.05; 1.15; 1.10; 0.80; 0.85; 0.95; 1.00; 1.05; 1.00; 1.05; 1.05; 0.95; 1.15; 1.00; 1.15; 0.95;
0.90; 0.95; 0.90; 1.00; 1.20; 1.10; 1.05; 1.00; 1.05 belongs to the normal law with the parameters μ = 1
and σ = 0.1 vary when the roundoff error is taken into account. The sample is the result of simulating
this law with the roundoff error Δ = 0.5σ.

We present the results of testing the hypothesis against a set of non-parametric goodness-of-fit tests
and Pearson’s χ2 test in Table 1, where we show the values of statistics and the estimates of achieved
significance levels pvalue computed by asymptotic and real distributions of statistics occurring at the
roundoff error Δ = 0.5σ. In the case of Pearson’s χ2 test we used 5 equally probable intervals. We can
see that the estimates of pvalue over the real distributions of statistics significantly differ from the values
obtained by asymptotic distributions.

If the alternative hypothesis H1 that the sample belongs to some another law is indeed true, then
the conditional distributions of statistic G(Sn|H1) occurring in testing the hypothesis H0 also vary
dependent on Δ. As Δ grows, the test power may either decrease or increase.

As an example, in Table 2 we provide the estimates of powers of goodness-of-fit tests in testing simple
and composite (with the estimation of two parameters of the law by the maximum likelihood method)
hypotheses that the samples belong to the normal law. As an alternative hypothesis H1, with respect to
which we estimated the power, we consider the logistic law with the density

f(x) =
π√
3θ1

e−π(x−θ0)/(
√
3θ1)

[1 + e−π(x−θ0)/(
√
3θ1)]2

,

which is very close to the normal one.
The estimates of power 1− β, where β is the probability of type II error (non-rejection of the

hypothesis H0 when the alternative hypothesis H1 is true), are given at n = 100 for the probability of
type I error α = 0.1. They were obtained with the number of simulation experiments N = 106, which
provides the estimates of power with an accuracy of approximately ±10−3.
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Table 1. Results of hypothesis testing

No. Test Statistic
Estimates of pvalue

from asymptotic
distribution of statistic

from real distribution of
statistic

1 K 1.073889 0.19903 0.721

2 CMS 0.156638 0.36997 0.776

3 AD 0.876389 0.4291 0.847

4 Ku 1.7235144 0.05723 0.791

5 W 0.1430680 0.1187 0.672

6 χ2 5.8310722 0.21212 0.497

Table 2. Estimates of power of goodness-of-fit tests dependent on Δ

No. Test
Estimates of power

Δ = 0 Δ = 0.05σ Δ = 0.1σ Δ = 0.2σ Δ = 0.5σ Δ = σ

Simple hypothesis is tested

1 K 0.127 0.126 0.133 0.131 0.150 0.240

2 Ku 0.199 0.202 0.209 0.224 0.265 0.340

3 CMS 0.113 0.113 0.114 0.116 0.134 0.211

4 W 0.208 0.209 0.211 0.218 0.254 0.318

5 AD 0.124 0.124 0.124 0.125 0.129 0.148

6 χ2 0.150 0.149 0.146 0.128 0.078 0.068

Composite hypothesis is tested

1 K 0.240 0.238 0.233 0.228 0.230 0.333

2 Ku 0.273 0.274 0.274 0.280 0.303 0.340

3 CMS 0.294 0.295 0.297 0.307 0.339 0.318

4 W 0.294 0.295 0.298 0.308 0.340 0.317

5 AD 0.327 0.327 0.328 0.328 0.320 0.256

6 χ2 0.117 0.118 0.117 0.112 0.091 0.136

We may note that, as the roundoff error Δ increases, the power of χ2 test decreases, but the power of
non-parametric goodness-of-fit tests may increase.

We point out that the roundoff error may similarly affect the distributions of statistics of multiple
special criteria oriented on testing the belonging of random values to a specific distribution law
(normal [8], uniform [9], exponential, etc.). Works [21, 22] are focused on the mistakes and wrongdoings
that may lead to incorrect conclusions in using the goodness-of-fit tests. In view of the above said, it is
clear that we should also pay attention to the possible influence of roundoff errors on our conclusions.

4. EFFECT OF THE ROUNDOFF ON DISTRIBUTIONS OF HOMOGENEITY STATISTICS

In k-sample tests two or more samples are simultaneously analyzed. The distributions G(S|H0)
of law homogeneity test statistics, in which the hypothesis of type H0: F1(x) = F2(x) = · · · = Fk(x) is
tested, are influenced by the degrees of roundoff and their difference in the analyzed samples. We consider
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Fig. 3. Dependence of distributions of statistic (3) on Δ2 at Δ1 = 0.01σ: (1) at Δ2 = Δ1 coincides with a1(s); (2) at
Δ2 = 0.1σ; (3) at Δ2 = 0.2σ; (4) at Δ2 = 0.3σ; (5) at Δ2 = 0.5σ; and (6) at Δ2 = 0.7σ.

the effect of the roundoff errors on the distributions of homogeneity test statistics on the example of two-
sample Lehmann–Rosenblatt (LR) and Smirnov (Sm) tests.

The statistic of the Lehmann–Rosenblatt test considered in [23, 24] is determiend by

SLR =
1

n1n2(n1 + n2)

⎡

⎣n1

n1∑

j=1

(sj − j)2 + n2

n2∑

i=1

(ri − i)2

⎤

⎦− 4n1n2 − 1

6(n1 + n2)
, (3)

where sj is the index number (rank) of x1j , ri is the index number (rank) of x2i in the joint variational
series of two samples with sizes n1 and n2.

When the tested hypothesis H0: F1(x) = F2(x) is true, the limit distribution of statistic (3) is the
same distribution a1(s) [24] that becomes limit for the CMS goodness-of-fit test statistic.

We consider the effect of the roundoff error on the distributions of homogeneity statistics when H0 is
true (without loss in generality) in the case when the analyzed samples belong to the standard normal
law.

At Δ1 = Δ2, sample sizes ni = 100, and Δi ≤ 0.5σ, the distributions G(SLR|H0) do not practically
deviate from the distribution a1(s), but they do deviate at unequal Δi.

In Fig. 3 the distributions G(SLR|H0) of test statistic (3) at ni = 100 are shown in dependence on Δ2

at Δ1 = 0.01σ. In this case the deviation of the distribution G(SLR|H0) from a1(s) at Δ1 = 0.05σ is yet
practically insignificant. At the same Δi, as ni grows, the deviations of G(SLR|H0) from a1(s) increase.

The Smirnov homogeneity test was proposed in work [25]. In contrast to the original version [14], we
consider the test with the modified statistic of the following form [26]:

SSm =

√
n1n2

n1 + n2

(
Dn1,n2 +

n1 + n2

4.6n1n2

)
, (4)

where Dn1,n2 = max(D+
n1,n2

,D−
n1,n2

),

D+
n1,n2

= max
1≤r≤n1

[
r

n1
− Fn2(xr)

]
= max

1≤s≤n2

[
Gn1(ys)−

s− 1

n2

]
,

D−
n1,n2

= max
1≤r≤n1

[
Fn2(xr)−

r − 1

n1

]
= max

1≤s≤n2

[
s

n2
−Gn1(ys)

]
.

The discrete distribution of statistic (4), different from the original one [14] by the presence of second
term in parentheses, converges faster to the asymptotic Kolmogorov distribution K(S) [26]. The set
of possible values of statistic is a grid with the step 1/k, where k is the least common multiplier of n1
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Fig. 4. Dependence of distributions of statistic (4) on Δi: (1) at Δi = 0; (2) at Δi = 0.01σ; (3) at Δi = 0.05σ; (4) at
Δi = 0.1σ; (5) at Δi = 0.2σ; (6) at Δi = 0.3σ; (7) at Δi = 0.5σ; and (8) at Δi = 0.7σ.

and n2 [14]. Therefore, it is more advantageous to apply the test when the sample sizes n1 and n2 are
not equal and are coprimes.

We can see in Fig. 4 that the distributions G(SSm|H0) of statistic (4) vary in a completely different
manner in dependence on the degree of roundoff. In the figure we show the distributions G(SSm|H0)
at Δ1 = Δ2 and sample sizes n1 = 101 and n2 = 103. As the roundoff error grows, the distributions
G(SSm|H0) shift towards the region of lower values.

In this case the distribution of statistic without roundoff errors of results practically coincides with the
Kolmogorov distribution. At the roundoff error Δi = 0, 01σ the deviation from K(S) is already visible,
and at Δi = 0.05σ it cannot be ignored anymore.

The study of the dependence of test powers with statistics (3) and (4) on the degree of roundoff Δi

(for 0 ≤ Δi ≤ 0.7σ and Δ1 = Δ2) showed that the growth in roundoff errors Δi does not significantly
influence the estimates of power.

Needless to say, the roundoff errors affect the distributions of statistic of the two-sample homogeneity
test of Anderson–Darling–Petit [27] as well as the distribution of statistics of the k-sample homogeneity
tests of Anderson–Darling [28] and Zhang [29] and of the k-sample tests based on the use of two-sample
ones [30].

The study of the distributions of statistics of two- and k-sample parametric homogeneity tests of
average, used for checking the hypothesis H0: μ1 = μ2 = · · · = μk or for checking the hypothesis H0:
μ = μ0 about the equality of the mathematical expectation to its nominal value, showed that the roundoff
errors of measurement results have no significant effect on them.

At the same time, the distributions of statistics of parametric criteria, applied for testing similar
hypotheses with respect to variances H0: σ2

1 = σ2
2 = · · · = σ2

k and H0: σ2 = σ2
0 , may be significantly

influenced by the roundoff errors. In particular, the distributions G(S|H0) of statistics of the parametric
Bartlett test [31] and Cochran C-test [32] vary if the roundoff errors Δi of the compared samples are
different. And the powers of these tests, as well as the power of the non-parametric Klotz test [33],
decrease with increasing Δi even at equal Δi [12].

5. CONCLUSIONS

In the situations when the roundoff error Δi appears to be comparable with the standard deviation σ of
the distribution law of measurement error, the real distributions G(Sn||H0) of test statistics for checking
statistical hypotheses at restricted sample sizes may significantly deviate from the limit distributions
G(S|H0) of these statistics or from G(Sn|H0) occurring in the classical case (where the roundoff errors
can be ignored). In such situations the classical results (the asymptotic distributions of statistics and
the tables of critical values) related with the test properties cannot be applied. Neglect of this fact will
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lead (more often) to an increase in type I errors (rejection of true hypothesis H0) or (less often, see the
Smirnov homogeneity test) to an increase in type II errors (non-rejection of H0 when some alternative
hypothesis is true).

The possible effect of the roundoff errors on the distributions of test statistics must be taken into
account in using specific tests in applications and in the automated systems of data processing, where
the statistical methods may be used to track persistence of laws (or detect their change).

Variation in test properties under the influence of roundoff errors does not exclude its possible correct
application. We just need to know the distribution G(Sn|H0) of test statistic at the same roundoff errors
Δi and same sample sizes ni which correspond to the analyzed samples. For this purpose the best thing
is to use statistical modeling methods. To simulate GN (Sn|H0) of multiple tests considered in [7–10],
we may use the program system ISW [11], which was applied to carry out the current investigations
and which includes the corresponding means of interactive modeling. The similar capabilities may be
embedded in any other system of data processing.

Finally, we underline that the signal for cautiousness in applying the classical results with respect to
the used tests is the presence of too many repeated values. If this is not the case, then we may rely on
the classical results. Otherwise, we should follow the proposed recommendations or decline to use the
corresponding test.
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