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Abstract

Advantages and disadvantages are studied, and powers are estimated for different goodness-
of-fit tests for the normal distribution (tests by Frosini, Hegazy-Green, Spiegelhalter, Geary
and David-Hartley-Pearson).

1 Introduction

Due to objective reasons, testing for deviation from normal distribution is frequent procedure when
conducting measurements, control, and tests. After State Standard (2002) have been released, Lemeshko
and Lemeshko (2005) conducted a comparative analysis of a number of statistical tests supposed for
testing for deviations from the normal distribution. A power was analyzed and shortcomings of particular
tests were revealed that had not been mentioned in literature before.

In present work, analysis started by Lemeshko et al. (2005) is continued. A set of tests is extended
by criteria proposed by Frosini (1978,1987), Hegazy and Green (1975), Spiegelhaler (1977), Geary(1935),
and David, Hartley, and Pearson (1964). Properties and powers of these tests were compared to the ones
that had been analyzed by Lemeshko et al. (2005). Recommendations on suitability of use of these tests
are given.

In comparative analysis of tests power we considered the same competing hypotheses as in Lemeshko
et al. (2005). Hypothesis H0 corresponds to normal law with density
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with the scale parameter θ1 = 1 and shift parameter θ0 = 0. The distribution of family
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with the shape parameter θ2 = 4, scale parameter θ1 = 1, and shift parameter θ0 = 0, is considered as
competing hypothesis H1; distribution of family (2) with shape parameter θ2 = 1 (Laplace distribution),
scale parameter θ1 = 1, and shift parameter θ0 = 0 – as H2; logistic distribution (3) with scale parameter
θ1 = 1, and shift parameter θ0 = 0 – as H3:
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To test deviations of an empirical distribution from the normal law it is possible to apply goodness-
of-fit tests (non-parametric and χ2-type). It seems natural to suppose that specially intended criteria
should have certain advantages (sufficiently wide collection of such is given by Kobzar (2006)). Actually,
such advantages are present when sample sizes are small, as rule.

But there are some complications. A simulation study in Lemeshko et al. (2005) showed that popular
Shapiro-Wilk’s and Epps-Pulley’s tests, recommended by the State Standard (2002), are biased under
small sample sizes and small significance levels α (type I error probabilities), i.e. with respect to H1

competing hypothesis (the power turns to be less than α). And, as we will see below, such serious
shortcomings are typical to several other tests studied in the present work.



2 Tests under Consideration

Tests under consideration are based upon the following statistics.
Frosini:
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x(i) are order statistics, Φ(z) is distribution function of standard normal law N(0, 1).
Hegazy-Green:
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where zi, x(i), and x are defined the same way as for Frosini’s statistic,
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ηi – mathematical expectation of i-th order statistic of standard normal law, which can be found as
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Normality hypothesis is rejected under high values of the statistic.
Geary:
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where d(α) is quantile of d statistic’s distribution.

David-Hartley-Pearson:

U =
R

s
, (8)

where R = xmax − xmin is range of sample, s2 =
∑n
i=1(xi − x)2/n is unbiased variance estimator.

Normality hypothesis is rejected when U < U1(α) or U > U2(α) (U1 and U2 are left and right quantiles
of U statistic’s distribution, respectively; α is significance level).

Spiegelhalter’s statistic is a combination of Geary’s and David-Hartley-Pearson’s statistics:
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, d is statistic (7). Normality hypothesis is

rejected under high values of statistic T ′.



3 Methodology of Study

In distributions study, percentage points calculation, and estimation of tests power with respect to differ-
ent competing hypotheses, we used statistical simulation method by Lemeshko et al. (2004). Distributions
modeling was conducted by means of specially written module for the system ISW (Lemeshko et al. 2004).
A count of trials (sizes of samples of statistics being studied) was choosen to N = 106 which allowed
estimation of corresponding probabilities with error within ±10−3.

4 Results of the Study

In course of research, the distributions of aforementioned tests were built under the assumptions that
hypotheses Hi, i = 0, 3, are true and n = 10, 20, 40, 60, 80, 100, 200, 300. For every sample size, tables of
percentage points were calculated and tests powers were estimated with respect to competing hypotheses
under consideration.

The common disadvantage of all six tests is that statistics distributions strongly depend on sample
size and that their analytical distribution is unknown. Consequently, when deciding whether to accept a
hypothesis or to reject it, one should follow the values of percentage points and can’t estimate an achieved
significance level, and it is hard to determine a degree of conformity or non-conformity of a given sample
to the normal law.

Basing upon the research of tests properties and taking into account the powers that tests have shown
with respect to competing hypotheses Hi, i = 1, 3, these tests could be ranged as follows:

Geary’s � Spiegelhalter’s1 � Hegazy-Green’s (T2)2 � Hegazy-Green’s (T1)3 � David-Hartley-Pearson’s
� Frosini’s.

But one should consider significant shortcomings of Spiegelhalter’s and Hegazy-Green’s tests:

• 1 Siegelhalter’s test can’t distinguish between hypotheses H0 and H1;

• 2 Hegazy-Green’s test with statistic T2, under small sample sizes, can’t distinguish between H0 and
H1 owing to bias;

• 3 Hegazy-Green’s test with statistic T1, under small sample sizes, is also somewhat biased as Shapiro-
Wilk’s and Epps-Pulley’s tests (Lemeshko et al. 2005).

In the given row of preference, Epps-Pulley’s test (Epps and Pulley 1983), that is included in the State
Standard (2002), should be placed after the Hegazy-Green’s T1 test due to it’s power; Shapiro-Wilk’s test
(Shapiro and Wilk 1965, Shapiro and Francia 1972) follows right after David-Hartley-Pearson’s test.

In Lemeshko et al. (2005) we gave the preference to a test with statistic z2 (D’Agostino, 1970) which
shown to be the most powerful with respect to competing hypotheses H1 and H3. In the row given above
it asks to be placed to the first place, but it is worse than other tests with respect to the more distant
hypothesis H2.

It should be mentioned that, when testing a composite hypothesis, Anderson-Darling’s Ω2 and
Nikulin’s χ2 goodness-of-fit tests are not much worse than tests with statistics z2 (Lemeshko et al. 2007,
Lemeshko et al. 2008), Hegazy-Green’s T1 and T2, Spiegelhalter’s, and Geary’s tests; they are better
than the rest of tests for normality, that we studied.
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