
Distributions are examined for the Abbé test statistics for various probability laws. It is shown that the

statistic distributions are stable when the normality assumptions are violated. The power of the criterion

with respect to various alternatives is examined.
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The Abbé test is intended for checking hypotheses of the type H0: E[ξ1] = E[ξ2] = ... = E[ξn], i.e., in checking that

all the observed quantities ξ1, ξ2, ..., ξn in a sample of volume n have identical mathematical expectations. A competing

hypothesis (alternative) consists in E[ξi+1] – E[ξi]> 0 for all values or certain of them i = 1, 2, ..., n – 1. The test is often

used for checking for the absence of systematic changes in a series of measurements. 

The Abbé test statistic in its current form [1] is represented by

(1)

where 

It is assumed that ξ1, ..., ξn are mutually independent normally distributed random quantities with identical but

unknown dispersions. If a certain alternative is true, then the denominator in the statistic SA is larger than the numerator and

the values of the statistic will as a rule be less than those that are observed when the basic hypothesis of equality for the means

is obeyed.

The conditional distribution G(SAn
H0) of the (1) statistic when H0 is true is dependent on the sample volume n, the

symmetry with respect to 1, and is determined in the interval 1 ± cos(π/n) [2]; as the sample volume increases, the distribu-

tion is closely fitted by a normal one with shift parameter 1 and with standard deviation for volumes n > 20 equal to [1]:

[(n – 2)/(n2 – 1)]1/2, (2)

and for n > 60 [3], by 

{(n – 2)/[(n – 1)(n + 2)]}1/2. (3)
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The decision on rejecting the hypothesis on equality of the means is taken if the value of the statistic SA is less than

the critical SAn
(α), where α is a given significance level, and the critical value is defined from P{SA < SAn

(α)} = α in accor-

dance with the conditional distribution for the statistic G(SAnH0).

A basic assumption for using the Abbé test is that ξ1, ..., ξn is a normal distribution; in [4], it was found during

research on the numerical characteristics of the (1) statistic distribution when hypothesis H0 applies and the readings have

various symmetrical distributions that the stability of these characteristics and the distribution of the Abbé statistic are unaf-

fected by the assumption of normality for ξ1, ..., ξn.

For many statistical tests, deviation from normality leads to substantial changes in the distribution of the test statis-

tic. However, one can say that some parametric tests related to hypotheses on the means can be said to be stable under vio-

lation of that assumption (on deviation from a normal distribution within fairly wide limits). Published sources give analyti-

cal estimates on the changes in distribution for certain statistics in connection with certain deviations of the measurement

errors from a normal law. Numerical studies that confirm this conclusion are to be found in [5]. There is high stability in tests

for the homogeneity of the means of two samples (for example, Student’s t tests for known and unknown variances) or for a

series of samples (for example, the F test); as a rule, the distribution of the statistic deviates significantly from classical with

unsymmetrical distributions for the observed random quantities or when there are heavy tails (for laws similar to the Cauchy

distribution). The situation is analogous with the Abbé test.

Here I examine how various degrees of deviation from a normal distribution affect the test statistic distribution and

give an evaluation of the power of a test in relation to certain alternatives. In particular, I examine what occurs with this statis-

tic distribution if the distribution of the observed quantities is skewed or with heavy tails, or constitutes a symmetrical distri-

bution differing to some extent from normal, or else a symmetrical multimode mixture. I examined the dependence of the

statistic distribution on the sample volume. Monte Carlo simulation of the statistic distribution is used.

Closeness of Abbé Statistic Distribution to Normal. I consider how justified one is in using an approximation to

the distribution of the (1) statistic in the form of a normal distribution with scale parameter of (2) or (3), and whether one can

use such approximation for n < 20.

Table 1 gives conformity checks on simulated empirical distributions for Abbé test statistics for normal observed

quantities ξ1, ..., ξn and the truth of hypothesis H0 with sample volumes of n = 10, 25, 100, 200 with normal distributions as

defined by the scale parameters of (2) and (3). The volume of the sample for simulated values of the statistic in all cases was

N = 10000. Pearson’s χ2 fit test with asymptotically optimal grouping [6] has been used with nonparametric tests:

Kolmogorov’s, Mises’ ω2 (Cramer–Mises–Smirnov), and Mises’ Ω2 (Anderson–Darling) [7].

Table 1 shows that for all values of n, (3) gives a result worse than that from (2) for approximating the distribution

of the Abbé statistic. Then one is not justified in using (3) for n > 60, and it is preferable to use the normal approximation

with the scale parameter of (2).

For n < 20, in spite of information on the symmetry [2] the distribution of the test statistic becomes skewed.

For example, for n = 10, the distribution of the Abbé statistic is appreciably skewed and differs substantially from the approx-

imating normal distribution with the scale parameter given by (2).
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TABLE 1. Significance Levels Attained on Checking the Conformity of a Distribution for the Statistic with a

Normal Distribution with the Scale Parameters of (2) and (3)

Conformity test
n = 10 n = 25 n = 100 n = 200

(2) (3) (2) (3) (2) (3) (2) (3)

Pearson χ2 0.0000 0.0000 0.0543 0.0656 0.5849 0.2988 0.2219 0.1725

Kolmogorov 0.0009 0.0000 0.1480 0.0171 0.6073 0.4203 0.2857 0.2701

Mises ω2 0.0022 0.0000 0.2379 0.0277 0.6134 0.4520 0.2076 0.1800

Mises Ω2 0.0003 0.0000 0.1517 0.0116 0.5189 0.2935 0.1948 0.1549



A few comments may be made on the simulation accuracy. Large sample volumes are required to construct the empiri-

cal distributions for the statistics with high guaranteed accuracy. Table 2 shows the dependence of the estimation error ε for the

distribution G(S) of the statistic S as against the number of experiments N in the Monte Carlo method. In the present case, ε defines

half the length of the 90% confidence range. Here G(S) and 1 – G (S) are simulated with identical accuracy. For example, for the

empirical distribution for the statistic ˝(S) = 0.5, the confidence range covering the true value is 0.5 ± 0.026 for N = 1000. Raising

the accuracy by an order of magnitude requires the sample volumes to be increased by two orders of magnitude.

On the other hand, experience shows that on constructing approximate to parametric models for distributions of

these kinds, increasing N from 104 to 106 has little practical value.

Dependence of the Abbé Statistic Distribution on the Observed Law. During research on statistic distributions

with an accepted hypothesis H0, we considered the assignment of an observed normal distribution with density 

and also the set of various symmetrical and unsymmetrical distributions. In particular, we examined the distribution of the

Abbé statistic and the power of the test when the readings corresponded to a family with density

(4)

and shape parameters θ3 = 0.2; 0.5; 1; 1.5; 2; 4; 8. In particular, if θ3 = 2, (4) gives the density of a normal distribution.

Figure 1 shows the distributions for the (1) statistic obtained by simulation when the readings belong to the distributions in

the family of (4) with various shape parameters: the laws varied from close to a Cauchy distribution to close to a uniform one. 

Figure 1 shows that when ξ1, ..., ξn belong to a fairly wide range of distributions for the Abbé test statistic, they do

not differ substantially from the distributions when the observations fit a normal law. If the law fitted by the observed quan-

tities is symmetrical and has tails that are not too heavy, then the distribution for the statistic does not differ greatly from the

classical one, and when the law is more flat-topped than normal, and also when it is more sharp-peaked (with large lordosis).

For example, it was found when we checked the uniformity of the distributions for the (1) statistic in the cases of

a normal law and a law with parameter θ3 = 8 by the use of the Smirnov and Lehmann–Rosenblatt tests [1, 8] that there is

no basis for declining the hypothesis of homogeneity. The test was performed on samples of the statistic values with vol-

ume N = 10000. The significance levels were 0.823 for the Smirnov test and 0.896 for the Lehmann–Rosenblatt one.

As those tests are of high power with such volumes of samples, these significance levels confirm almost complete coinci-

dence between the distributions for the corresponding samples.

An analogous conclusion applies for ξ1, ..., ξn belonging to a uniform distribution.

In (4) with θ3 = 0.2 and 0.5, the distributions for the (1) statistic differ substantially from a classical one corre-

sponding to the readings fitting a normal distribution.
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TABLE 2. Error ε in Simulating the Statistic Distribution in Relation to Number of Monte Carlo Tests

N
Values of ε for ˝(S)

0.5 0.4 0.3 0.2 0.1 0.05 0.01

1000 0.0260 0.0255 0.0238 0.0208 0.0156 0.0113 0.0052

10000 0.0082 0.0081 0.0075 0.0066 0.0049 0.0036 0.0016

100,000 0.0026 0.00255 0.00238 0.00208 0.00156 0.00113 0.00052

1,000,000 0.00082 0.00081 0.00075 0.00066 0.00049 0.00036 0.00016



If there is marked skewness in the distribution of the observed random quantities, the distribution for the (1) statis-

tic becomes different from the classical one. Figure 1 shows the distribution of the (1) statistic for the case of ξ1, ..., ξn belong-

ing to an exponential distribution. It is clear that the effects of the skewness on the statistic distribution are less significant

than when the tails are heavy. When ξ1, ..., ξn fits an unsymmetrical distribution, the extreme values (minimal or maximal)

in the distribution for the (1) statistic hardly differ from the classical one.

The behavior of the distribution for the Abbé test statistic was examined for cases where the observed distribution

is the symmetrical mixture of distributions, e.g., two normal distributions of the form

(5)

The simulation results for distributions for the Abbé test statistic corresponding to the ξ1, ..., ξn representing the (5)

mixtures have been examined with shifts in the mixture components of ±1θ2, ±2θ2, ±3θ2 relative to θ1, which literally are

superimposed on one another and on the distribution of the statistic for a normal law. The Smirnov and the Lehmann–

Rosenblatt homogeneity tests [1, 8] confirm that there is essential coincidence between the distributions.

From this we conclude that the Abbé test is not sensitive (is robust) for a bimodal distribution of the observed quan-

tities subject to the condition that it is symmetrical and does not have heavy tails.

Abbé Test Power Study. In what follows, the hypothesis H0 corresponds to obedience to the assumption that the

observed quantities ξ1, ..., ξn are independent and belong to a normal distribution with identical but unknown dispersions.

Without loss of generality, we can consider the assignment of ξ1, ..., ξn to a standard normal law. As competing hypothesis

we have considered various situations in the presence of a trend. 

In the case of a linear trend, we simulated the random quantities

xi = at + ξi, (6)

on which we tested the hypothesis H0; in (6), the ξi are independent random quantities distributed in accordance with the stan-

dard normal law t ∈ [0, 1].
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For an exponential
distribution

Fig. 1. Distributions for the Abbé test statistic in relation to the shape parameter

in the (4) family for n = 25.



The xi of (6) are calculated in accordance with xi = a(i – 1)∆t +ξi, where the step ∆t is defined as ∆t = 1/n in relation

to the sample volume n. The random quantities ξi were generated in accordance with a standard normal law. We examined the

power of the test relative to an alternative with linear trend defined by the parameters a = 0.5; 1; 2; 3; 4; the corresponding

alternatives are denoted subsequently as H1, ..., H5. Figure 2 shows an example of a sample corresponding to the alternative H3
for n = 100.

Figure 3 shows the empirical distributions G(SAn
Hi) for the Abbé statistic constructed by simulation in the pres-

ence of a linear trend in the case of a sample volume n = 25. The values of the power 1 – β of the Abbé test, where β is the

probability of error of the second kind, is shown relative to the alternatives H1, ..., H5 with linear trend of (6) in relation to

the sample volume n with significance levels α = 0.025; 0.05; 0.1 in Table 3.

Similar studies were performed on the distributions of the Abbé test statistics and the power with respect to alterna-

tives with periodic trend:

xi = asin(2πt) +ξi, (7)
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Fig. 2. Time series corresponding to model of (6) with a = 2 and n = 100.

Fig. 3. Distributions of Abbé test statistic in the case of a normal law and linear trend

of the form of (6) for n = 25.



where as in the previous case, ξi are independent random quantities distributed in accordance with a standard normal distri-

bution, t ∈ [0, 1], ∆t = 1/n, while the xi are derived in accordance with (7) as xi = asin(2π(i – 1)∆t) +ξi.

We examine the power relative to the alternatives with the nonlinear trend of (7) specified by the parameter a = 0.1;

0.25; 0.5; 1; 1.5; the corresponding alternatives are denoted by H6, ..., H10. Figure 4 shows a sample for the alternative H8
with n = 100.

Table 4 shows the empirical distributions G(SAn
Hi) produced by simulation for the Abbé statistic in the presence

of a (7) nonlinear trend and gives values of the power of the Abbé test relative to the alternatives H6, ..., H10 in dependence

on the sample volume n at significance levels α = 0.025; 0.05; 0.1.

We then examined the power of the test relative to the alternatives with trend of the form

xi = at + asin(2πt) +ξi. (8)
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TABLE 3. Abbé Test Power for a Linear Trend as in (6)

n α H1 H2 H3 H4 H5

10 0.025 0.034 0.054 0.159 0.349 0.570

0.05 0.059 0.091 0.232 0.455 0.678

0.1 0.114 0.159 0.344 0.579 0.799

25 0.025 0.035 0.074 0.298 0.654 0.913

0.05 0.067 0.128 0.394 0.752 0.953

0.1 0.125 0.206 0.514 0.840 0.978

50 0.025 0.036 0.087 0.441 0.877 0.995

0.05 0.071 0.147 0.564 0.935 0.999

0.1 0.134 0.248 0.691 0.968 1

100 0.025 0.043 0.123 0.699 0.993 1

0.05 0.079 0.199 0.806 0.997 1

0.1 0.144 0.306 0.889 0.999 1

TABLE 4. Abbé Test Power with Nonlinear Trend of the (7) Form

n α H1 H2 H3 H4 H5

10 0.025 0.026 0.033 0.057 0.176 0.391

0.05 0.051 0.060 0.099 0.267 0.523

0.1 0.010 0.116 0.179 0.397 0.679

25 0.025 0.026 0.035 0.104 0.431 0.851

0.05 0.052 0.075 0.156 0.546 0.911

0.1 0.103 0.135 0.249 0.676 0.953

50 0.025 0.026 0.037 0.126 0.660 0.980

0.05 0.053 0.078 0.207 0.777 0.993

0.1 0.105 0.148 0.333 0.866 0.998

100 0.025 0.028 0.051 0.207 0.908 1

0.05 0.056 0.095 0.312 0.950 1

0.1 0.110 0.171 0.451 0.977 1



We considered the alternatives H11, ..., H15 defined by the parameters a = 0.25; 0.5; 1; 1.5; and 2, respectively. 

The simulation gave the power relative to the alternatives H11, ..., H15 with a trend of the (8) form in relation to the

sample volume for significance levels α = 0.025; 0.05; 0.1 (Table 5).

We examined the power of the test for alternatives with a linear trend of the (6) form in cases where ξi fits laws in

the (4) family with form parameters θ3 = 1 and θ3 = 4 and scale parameter θ2 = 1. In the case of a Laplace distribution

(θ3 = 1), the power relative to H1, ..., H5 was lower than that for a normal law, while for θ3 = 4 it was higher. In that situ-

ation, in the case of a Laplace distribution, the dispersion is greater than that for a standard normal law, while in the case of

the (4) law with shape parameter θ3 = 4, it is less.

We examined the power against that of the alternatives for various laws of the (4) form but with identical dispersions

for the ξi, which gave power estimates virtually coincident with the values given in Table 2. This means that the distribution

for the test statistic when the competing hypothesis applies, and consequently the power of the test is almost unaffected by

968

TABLE 5. Abbé Test Power Relative to Alternatives with Trend of (8)

n α H1 H2 H3 H4 H5

10 0.025 0.028 0.036 0.067 0.138 0.236

0.05 0.053 0.067 0.125 0.227 0.375

0.1 0.104 0.129 0.227 0.380 0.562

25 0.025 0.029 0.059 0.206 0.502 0.809

0.05 0.062 0.104 0.294 0.623 0.882

0.1 0.117 0.172 0.415 0.734 0.937

50 0.025 0.030 0.064 0.324 0.759 0.972

0.05 0.063 0.119 0.447 0.851 0.989

0.1 0.124 0.215 0.580 0.919 0.996

100 0.025 0.038 0.095 0.555 0.962 0.999

0.05 0.071 0.162 0.686 0.980 1

0.1 0.133 0.266 0.790 0.989 1

Fig. 4. Time series corresponding to the (7) model with a = 2 and n = 100.



the form of the law, but the power of the test is dependent on the dispersion of the observed quantities (measurement errors),

i.e., the more accurate the measurements, the higher the power of the test, which is entirely logical.

From these studies, we consider that the Abbé test is correctly applied when one is dealing with a law substantially

different from normal, but the law should not have heavy tails and should be symmetrical. The law may be bimodal and

described by a symmetrical mixture of laws. At the same time, moderate skewness in the observed distribution has hardly any

effect on the distribution of the test statistic.

These test power estimates enable one to judge the capacity to observe linear and nonlinear trends. 

As distribution for the test statistic with n > 20, one can use the normal approximation of (2), which is also prefer-

able to (3) for large n.
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