
The power of the Kuiper, Watson, and three Zhang tests of goodness-of-fit with different statistics are estimated

relative to some pairs of competing distributions for testing simple and composite hypotheses. The powers of

these tests are compared with those of the Kolmogorov, Cramer–Mises–Smirnov, and Anderson–Darling tests.
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The purpose of this paper is to draw attention to some nonparametric tests of goodness-of-fit that are rarely, if ever,

used by Russian specialists for the statistical analysis of experimental data. These include, for example, the Kuiper [1] and

Watson [2, 3] tests because they appear to be extensions and analogs of the Kolmogorov and Cramer–Mises–Smirnov tests

and, therefore, have no clear advantages over the latter, as well as others (proposed in [4–7]) because of limited source avail-

ability and a lack of independent recommendations for their use.

The testing of goodness-of-fit differs for simple and composite hypotheses. A simple testable hypothesis has the

form H0: F(x) = F(x, θ), where F(x, θ) is a known theoretical probability distribution function with a known scalar or vector

parameter θ. For testing simple hypotheses, nonparametric tests of goodness-of-fit are distribution-free; i.e., when the tested

hypothesis is true, the distribution of the test statistics, G(S⏐H0), is independent of the form of the distribution F(x, θ) with

which the goodness-of-fit is being tested.

When testing composite hypotheses of the form H0: F(x) ∈ {F(x, θ), θ ∈ Θ}, where an estimate q of the scalar or

vector parameter of the distribution F(x, θ) is calculated over a given sample, nonparametric tests of goodness-of-fit lose the

distribution-free property. Then the conditional distribution of the statistics G(S⏐H0) depends on a number of factors: the form

of the observed distribution F(x, θ) corresponding to a true hypothesis H0 to be tested; the type and number of parameters to

be estimated; in some cases on the specific value of the parameter (e.g., in the case of families of gamma- and beta-distribu-

tions); and the method for estimating the parameters. The differences in the distributions for a given statistic during testing

of simple and composite hypotheses are so large that this cannot be ignored in any case.

We emphasize that the available classical results for the tests discussed in this paper (distributions of the test statis-

tics or tables of percentage points) apply only to testing of simple hypotheses.

The Kuiper Test. Kuiper proposed [1] an extended Kolmogorov type test for testing the hypothesis that a random

sample belongs to a distribution law with a continuous distribution function F(x, θ). The statistic Vn for the test is defined as

V F x F x F x F xn
x

n
x

n= − − −
−∞< <∞ −∞< <∞

sup { ( ) ( , )} inf { ( ) ( , )},θ θ
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where Fn(x) is the empirical distribution function, and is used in the form

(1)

where

Dn
+ = max{i /n – F(xi, θ)};     Dn

– = max{F(xi, θ) – (i – 1) /n},

with i =⎯⎯⎯1, n, n is the volume of the sample, and here and in the following the xi are the elements of a variation series con-

structed from the sample (in increasing order).

The major deficiency of the test employing the (1) statistic is that its distribution depends on the sample size n. This

kind of dependence of the distributions G(Vn⏐H0) of the statistic when the simple tested hypothesis H0 is true is illustrated

by the simulations shown in Fig. 1.

Tables of the percentage points for tests of simple hypothesis using the test statistic of (1) can be found in [8, 9].

As a limiting distribution G(√⎯nVn⏐H0) for the statistic √⎯nVn, Kuiper [1] gives the following distribution function [9]:

Percentage points are tabulated in [10] for the modified statistic:

(2)

for which the distribution is no longer as strongly dependent on n. (Here and in the following α is the probability of a type I error.)

α 0.15 0.10 0.05 0.01

Vn
mod 1.537 1.620 1.747 2.001

The dependence of the distribution for the (2) statistic on the sample size can be neglected for n ≥ 20, since the devi-

ation of its real distribution from the limit is negligible and essentially has no effect on the statistical conclusions.

We propose the use of the modified statistic

(3)V n D D nn n n
mod ( ) /( )= + ++ − 1 3

V V n nn= + +( )0 155 0 24. . / ,

G s H m s m s
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e
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Fig. 1. Distributions of the (1) statistic for the Kuiper test G(Vn⏐H0) as a function

of the sample size n for testing a simple hypothesis.



in the Kuiper test, where the validity of using this correction follows naturally from the expression for the Smirnov goodness-

of-fit test (p. 81 of [11]). The dependence of the distribution of statistic (3) on the sample size can be neglected for n ≥ 30.

Percentage points for this statistic have also been tabulated and are essentially the same as those for statistic (2).

α 0.15 0.10 0.05 0.01

Vn
mod 1.537 1.619 1.747 2.000

Statistics (2) and (3) have the same limiting distribution. For small n, the difference between their distributions is

quite substantial. However, for n ≥ 20, in the decision making region (for values of G(V⏐H0) > 0.9 and G(Vn
mod⏐H0) > 0.9)

these distributions are essentially the same.

As a model for the limiting distribution of statistic (3), we can use a beta distribution of the third kind with density

and the parameter vector q = (7.8624; 7.6629; 2.6927; 2.6373; 0.495)T. This distribution corresponds to the following tabu-

lated percentage points:

α 0.15 0.10 0.05 0.01

Vn
mod 1.537 1.620 1.747 1.993

This model describes the distribution of the statistic over its entire domain of definition; it, as well as the limiting

distribution, can be used for calculating the attained level of significance P{S > S*⏐H0}: the probability that, when the tested

hypothesis H0 is true, the statistic S for the test exceeds the value S* of the statistic calculated from the sample.

The Watson Test. The statistic for the Watson test [2, 3] is

and is used in the computationally convenient form:

(4)

The percentage points of the statistic Un
2 for test of a simple hypothesis can be found in [2, 12]. The limiting distri-

bution G(Un
2⏐H0) for the statistic Un

2 is [2, 3]

Modifications of the Kuiper and Watson tests have been discussed in [13] and of the Watson test, in [14]. The per-

centage points for the distributions of the modified statistics are given in [13]. In particular, the upper percentage points for

the modified Watson statistic of the form
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are given by [13]

α 0.15 0.10 0.05 0.01

Un
2* 0.131 0.152 0.187 0.267

The upper percentage points for the distribution of statistic (4) are essentially the same:

α 0.15 0.10 0.05 0.01

Un
2* 0.131 0.151 0.187 0.268

It should be emphasized that the distribution of statistic (4) has a weak dependence on the sample size. For n ≥ 20,

the difference between the distribution of statistic (4) and the limiting distribution can be neglected.

The limiting distribution for statistic (4) over the entire domain of definition can be approximated using a model of

an inverse gaussian law with density

with a parameter vector q = (0.2044; 0.08344; 1.0; 0.0)T. This distribution (along with the limiting distribution) can be used

for calculating the attained level of significance.

The asymptotic effectiveness of the Watson test has been studied elsewhere [15].

The Zhang tests. Nonparametric tests of goodness-of-fit with the following statistics have been proposed by Zhang

[4, 5–7]:

(5)

(6)

(7)

Zhang’s claim that these tests have greater powers than the Kolmogorov, Cramer–Mises–Smirnov, and Anderson–

Darling tests has been confirmed recently [16]. However, a recommendation for wider use of these tests was denied because

of the strong dependence of the distributions of statistics (5)–(7) on the sample size n. As an example, this dependence for

the statistic ZA is illustrated by the simulated distributions of the statistic in Fig. 2. This dependence makes it more difficult

to use the tests. Naturally, the dependence on n is retained when testing composite hypotheses.

A Comparative Analysis of the Power of the Tests. It is essentially impossible to study the power of the tests

without using computer technology and statistical modelling of the distributions of the statistics for the tests. For studying

the distributions of the statistics for the validity of the tested G(S⏐H0) and competing G(S⏐H1) hypotheses, here we have used

our earlier approach [17]. The statistical modelling provided an accuracy in constructing the distributions of the statistics

G(S⏐Hi), i =⎯⎯⎯0, 1 on the order of ±10–3 with a confidence coefficient of 0.9. This quantity determines the maximum length

of the confidence interval covering the true value of the distribution function at a point. It approaches this value in the region

of the median.
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In order to compare the power of these distributions with the Kolmogorov (K), Cramer–Mises–Smirnov (CMS), and

Anderson–Darling (AD) tests, we show the results of studies for the same two pairs of competing distributions as in [18–20].

The first pair consists of a normal and a logistic distribution: the hypothesis H0 to be tested corresponds to a normal law

with density

and the competing hypothesis H1, to a logistic distribution with density

and parameters θ0 = 1 and θ1 = 0. In the case of a simple hypothesis H0, the parameters of the normal distribution have the

same values. These two distributions are close and difficult to distinguish using goodness-of-fit criteria.

The second pair has H0 as a Weibull distribution with a density

and parameters θ0 = 2, θ1 = 2, and θ2 = 0, and H1 as a gamma distribution with a density

and parameters θ0 = 3.12154, θ1 = 0.557706, and θ2 = 0, for which the gamma distribution is closest to this Weibull distribution.

The power of these distributions was studied for testing of simple and composite hypotheses H0 against a simple

competing hypothesis H1.

Table 1 lists the estimated power of the tests for testing a simple hypothesis H0 (normal distribution) against hypoth-

esis H1 (logistic) for different values of the probability α of a type I error and different sample sizes. Table 2 does the same

for testing a simple hypothesis H0 (Weibull distribution with parameters 2, 2, 0) against hypothesis H1 (gamma distribution

with parameters 3.12154, 0.557706, 0).
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Fig. 2. Distributions Gn(ZA⏐H0) of statistic (5) as functions of sample

volume n for simple hypothesis testing.



Similarly, the estimated powers for the same pairs of competing distributions are shown in Tables 3 and 4 for test-

ing of composite hypotheses. A maximum likelihood method was used for estimating the parameters of the distribution when

testing the composite hypotheses.

α n = 10 n = 20 n = 50 n = 100 n = 300 n = 500 n = 2000

Zhang test (ZC)

0.150 0.214 0.258 0.330 0.410 0.638 0.792 0.997

0.100 0.155 0.195 0.265 0.344 0.574 0.740 0.997

0.050 0.095 0.125 0.187 0.260 0.481 0.654 0.995

0.025 0.063 0.086 0.138 0.201 0.406 0.577 0.991

0.010 0.040 0.057 0.096 0.148 0.327 0.487 0.982

Zhang test (ZA)

0.150 0.205 0.243 0.297 0.360 0.582 0.757 0.999

0.100 0.143 0.175 0.221 0.274 0.485 0.675 0.999

0.050 0.075 0.097 0.129 0.167 0.341 0.532 0.996

0.025 0.039 0.052 0.074 0.099 0.230 0.401 0.989

0.010 0.016 0.022 0.034 0.048 0.129 0.259 0.970

Zhang test (ZK)

0.150 0.169 0.194 0.246 0.314 0.529 0.693 0.996

0.100 0.115 0.134 0.178 0.235 0.434 0.601 0.991

0.050 0.060 0.072 0.102 0.144 0.303 0.458 0.974

0.025 0.032 0.039 0.059 0.088 0.209 0.340 0.941

0.010 0.015 0.018 0.029 0.047 0.127 0.224 0.872

Watson test

0.150 0.163 0.175 0.214 0.278 0.506 0.680 0.995

0.100 0.111 0.120 0.153 0.208 0.421 0.602 0.992

0.050 0.057 0.064 0.086 0.126 0.301 0.477 0.981

0.025 0.029 0.033 0.048 0.075 0.211 0.368 0.964

0.010 0.012 0.014 0.022 0.037 0.128 0.250 0.929

Kuiper test

0.150 0.163 0.174 0.209 0.268 0.482 0.652 0.993

0.100 0.110 0.119 0.149 0.199 0.396 0.570 0.987

0.050 0.057 0.062 0.082 0.118 0.279 0.443 0.972

0.025 0.029 0.032 0.045 0.070 0.192 0.335 0.948

0.010 0.012 0.014 0.020 0.035 0.113 0.223 0.904
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TABLE 1. Power of Goodness-of-Fit Tests for Testing a Simple Hypothesis H0 (normal distribution) Against Hypothesis H1
(logistic)



On comparing the estimates of the power of these tests and of the Kolmogorov, Cramer–Mises–Smirnov, and Ander-

son–Darling tests [19, 20], we can order the tests in terms of their power for testing as follows:

• simple hypotheses with respect to the normal distribution – logistic distribution pair ZC � ZA � ZK � Un
2 � Vn �

� AD � K � CMS;

α n = 10 n = 20 n = 50 n = 100 n = 300 n = 500 n = 2000

Zhang test (ZC)

0.150 0.194 0.224 0.305 0.427 0.786 0.938 1.000

0.100 0.140 0.168 0.239 0.350 0.718 0.906 1.000

0.050 0.084 0.106 0.163 0.254 0.603 0.837 1.000

0.025 0.053 0.070 0.116 0.188 0.499 0.756 1.000

0.010 0.031 0.044 0.077 0.131 0.384 0.641 1.000

Zhang test (ZA)

0.150 0.183 0.204 0.272 0.394 0.774 0.935 1.000

0.100 0.127 0.142 0.196 0.300 0.693 0.898 1.000

0.050 0.068 0.076 0.107 0.180 0.549 0.815 1.000

0.025 0.036 0.040 0.057 0.103 0.413 0.711 1.000

0.010 0.015 0.017 0.024 0.047 0.264 0.558 1.000

Zhang test (ZK)

0.150 0.183 0.205 0.266 0.364 0.684 0.868 1.000

0.100 0.129 0.146 0.198 0.282 0.593 0.805 1.000

0.050 0.070 0.082 0.118 0.182 0.451 0.684 1.000

0.025 0.039 0.047 0.071 0.116 0.335 0.561 0.999

0.010 0.018 0.022 0.037 0.065 0.222 0.415 0.996

Watson test

0.150 0.171 0.190 0.251 0.350 0.661 0.842 1.000

0.100 0.117 0.132 0.185 0.273 0.581 0.787 1.000

0.050 0.061 0.072 0.108 0.175 0.455 0.685 0.999

0.025 0.032 0.038 0.063 0.111 0.346 0.581 0.998

0.010 0.013 0.017 0.030 0.059 0.235 0.448 0.995

Kuiper test

0.150 0.170 0.187 0.243 0.335 0.633 0.819 1.000

0.100 0.116 0.130 0.178 0.258 0.550 0.759 1.000

0.050 0.060 0.069 0.103 0.163 0.423 0.649 0.999

0.025 0.031 0.037 0.058 0.102 0.317 0.541 0.997

0.010 0.013 0.016 0.028 0.054 0.208 0.407 0.992
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TABLE 2. Power of Foodness-of-Fit Tests for Testing a Simple Hypothesis H0 (Weibull distribution with parameters 2, 2, 0)

Against Hypothesis H1 (gamma distribution with parameters 3.12154, 0.557706, 0)



• simple hypotheses with respect to the Weibull distribution – gamma distribution pair ZC � ZA � ZK � Un
2 � Vn �

� AD � CMS � K;

• composite hypotheses with respect to the normal distribution – logistic distribution pair ZA ≈ ZC � ZK � AD �
� CMS � Un

2 � Vn � K; and

α n = 10 n = 20 n = 50 n = 100 n = 300 n = 500 n = 2000

Zhang test (ZA)

0.150 0.210 0.259 0.340 0.434 0.706 0.865 1.000

0.100 0.153 0.198 0.272 0.358 0.633 0.815 1.000

0.050 0.090 0.126 0.185 0.256 0.512 0.718 0.999

0.025 0.052 0.080 0.126 0.180 0.403 0.615 0.998

0.010 0.025 0.045 0.075 0.112 0.282 0.478 0.995

Zhang test (ZC)

0.150 0.195 0.236 0.321 0.427 0.711 0.866 0.998

0.100 0.142 0.186 0.270 0.374 0.662 0.831 0.998

0.050 0.086 0.126 0.205 0.302 0.584 0.770 0.998

0.025 0.052 0.086 0.156 0.243 0.510 0.705 0.997

0.010 0.026 0.051 0.105 0.176 0.411 0.609 0.996

Zhang test (ZK)

0.150 0.176 0.221 0.316 0.424 0.692 0.839 0.999

0.100 0.123 0.162 0.249 0.349 0.614 0.779 0.998

0.050 0.068 0.097 0.167 0.248 0.492 0.668 0.995

0.025 0.038 0.058 0.111 0.176 0.386 0.557 0.988

0.010 0.018 0.029 0.066 0.112 0.271 0.424 0.966

Watson test

0.150 0.177 0.201 0.268 0.367 0.673 0.848 1.000

0.100 0.124 0.145 0.204 0.294 0.599 0.798 1.000

0.050 0.068 0.084 0.128 0.200 0.481 0.704 0.999

0.025 0.038 0.049 0.081 0.135 0.380 0.608 0.999

0.010 0.018 0.025 0.044 0.080 0.270 0.486 0.996

Kuiper test

0.150 0.171 0.194 0.256 0.346 0.633 0.812 1.000

0.100 0.119 0.139 0.192 0.273 0.554 0.752 0.999

0.050 0.064 0.079 0.118 0.181 0.433 0.646 0.998

0.025 0.035 0.045 0.073 0.119 0.333 0.544 0.996

0.010 0.016 0.022 0.039 0.069 0.228 0.416 0.989
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TABLE 3. Power of Goodness-of-Fit Tests for Testing a Composite Hypothesis H0 (normal distribution) Against Hypothesis H1
(logistic)



• composite hypotheses with respect to the Weibull distribution – gamma distribution pair ZA � ZC � AD � ZK �
� CMS � Un

2 � Vn � K.

Comparing these results with the power of the χ2 type tests, we find that for testing of simple hypotheses [19] the

Pearson χ2 test ends up in the third position if asymptotic optimum grouping [17] is used along with a choice of the number

α n = 10 n = 20 n = 50 n = 100 n = 300 n = 500 n = 2000

Zhang test (ZA)

0.150 0.165 0.219 0.358 0.533 0.880 0.974 1.000

0.100 0.112 0.161 0.287 0.456 0.837 0.960 1.000

0.050 0.059 0.095 0.196 0.345 0.754 0.925 1.000

0.025 0.030 0.056 0.132 0.256 0.664 0.879 1.000

0.010 0.013 0.028 0.077 0.169 0.540 0.799 1.000

Zhang test (ZC)

0.150 0.170 0.215 0.341 0.509 0.867 0.971 1.000

0.100 0.113 0.152 0.264 0.426 0.818 0.954 1.000

0.050 0.055 0.081 0.166 0.303 0.722 0.913 1.000

0.025 0.024 0.041 0.098 0.203 0.610 0.853 1.000

0.010 0.007 0.014 0.044 0.107 0.440 0.732 1.000

Zhang test (ZK)

0.150 0.147 0.173 0.277 0.436 0.814 0.947 1.000

0.100 0.097 0.117 0.206 0.352 0.747 0.916 1.000

0.050 0.048 0.060 0.121 0.236 0.623 0.844 1.000

0.025 0.023 0.030 0.070 0.151 0.499 0.751 1.000

0.010 0.009 0.012 0.032 0.081 0.350 0.609 1.000

Watson test

0.150 0.169 0.195 0.267 0.377 0.710 0.885 1.000

0.100 0.116 0.138 0.200 0.299 0.634 0.838 1.000

0.050 0.061 0.077 0.122 0.199 0.511 0.748 1.000

0.025 0.033 0.043 0.075 0.131 0.401 0.650 1.000

0.010 0.015 0.020 0.039 0.075 0.284 0.523 0.999

Kuiper test

0.150 0.167 0.189 0.248 0.343 0.661 0.852 1.000

0.100 0.114 0.132 0.183 0.266 0.579 0.797 1.000

0.050 0.060 0.072 0.108 0.171 0.450 0.691 1.000

0.025 0.032 0.040 0.064 0.109 0.341 0.583 0.999

0.010 0.014 0.018 0.032 0.059 0.230 0.449 0.998
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of intervals such that the test will have a maximum power [17, 21]. However, for testing of composite hypotheses [20] the

positions of the Pearson χ2 test and of the Nikulin–Rao–Robson χ2 type test [22–24] are inferior: they end up in the 7th or

8th place in the overall series of tests ranked by decreasing power. We note, however, that the power of these tests can be max-

imized relative to a given competing hypothesis through optimal choice of the limits and umber of grouping intervals [17, 21].

This paper can be summarized as follows: the Kuiper and Watson tests are best for testing simple hypotheses, since

then they have an advantage in power over the Kolmogorov, Cramer–Mises–Smirnov, and Anderson–Darling tests. There are

no difficulties in applying these tests to simple hypotheses.

In testing of composite hypotheses the Kuiper and Watson tests lose their advantage over the Cramer–Mises–Smir-

nov and Anderson–Darling tests. However, this does not mean that they should not be used in this case. At present, the obsta-

cle is the lack of knowledge about the distributions (i.e., their percentage points) of the statistics for testing the corresponding

composite hypotheses. Later it is planned to provide some results (models of limiting distributions and tables of percentage

points) that, as do [17, 25–27], will make it possible to apply the Kuiper and Watson tests to composite hypotheses regarding

various parametric models for the probability distributions.

The Zhang tests, especially with the statistics ZC and ZA, have an indisputable advantage in power compared to the

other tests that is more noticeable in the testing of simple hypotheses. These tests have certain difficulties associated with the

strong dependence of the distributions of the statistics on sample size, but these difficulties are not fundamental.

In the testing of composite hypotheses, when the dependence of the distributions of the statistics on n is supple-

mented by their dependence on various factors which determine the complexity of the hypothesis, these difficulties become

fundamental since it is impossible to find distributions for the test statistics in advance for an infinite variety of composite

hypotheses. However, there is also a way out that involves changing the technology for testing a composite hypothesis with

a particular criterion [28]. The corresponding approach assumes a study of the required behavior in an interactive mode. In this

situation this means that the distribution of the statistic for the test being used, which is unknown at the start of solving the

statistical analysis problem (since all the factors determining the character of the composite hypothesis are unknown), must

be found in real time for this analysis and used in the decision making stage (to accept or reject the test hypothesis based on

a calculated value of the test statistic and computer derived knowledge of the distribution of the statistic). This approach has

been used successfully with multiprocessor computing [28].

In conclusion, we note that further development of the apparatus of applied mathematical statistics and success in the

use of statistical methods in science, technology, and the economy are inseparable from extensive use of computer simulations

and studies of statistical and probabilistic behavior and the development of suitable scientifically based computer programs.

This work was supported by the Ministry of Education and Science of the Russian Federation (Project No. 8.1274.2011)

and the Federal Targeted Program on Scientific and Teaching Staff for an Innovative Russia (agreement No. 14.V37.21.0860).
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