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COMPARATIVE ANALYSIS OF THE CRITERIA FOR CHECKING 

THE HYPOTHESIS OF UNIFORMITY OF LAW

B. Yu. Lemeshko and P. Yu. Blinov UDC 519.24

We examine a set of specifi c criteria designed to test hypotheses about the membership of observations to the 

uniform law. We studied the distribution of statistics of criteria and their power relative to various competing 

hypotheses. We identifi ed advantages and disadvantages of the various criteria. It has been shown that a 

signifi cant part of the criteria traditionally used when testing hypotheses about uniformity, is ectopic relative 

to a certain type of competing hypotheses. It is stressed that the special criteria for testing uniformity have 

no obvious advantages over non-parametric agreement criteria used for checking uniformity.
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 In applied mathematical statistics, the uniform distribution law of probabilities occupies an important position. 

Sometimes it is used as a model for the description of measurement errors of certain devices or or measurement systems.

 The probability distribution function of the uniform law on the interval [0, 1] has the form F(x) = x. The hypothesis 

of membership of the sample Х1, Х2, ..., Хn of independent observations of the random variable X to the uniform law can be 

written as H0: F(x) = х, x ∈ [0, 1]. Most criteria for testing the hypothesis of uniformity in the specifi ed range are based on 

estimates of order statistics of the magnitude X (on the elements x(i) of the variational series 0 < x(1) < x(2) < ... < x(n) < 1, 

constructed on Х1, Х2, ..., Хn). Below in expressions of the statistics of criteria, we use the notation U(i) = x(i), i = 1, ..., n, 

U0 = 0, Un+1 = 1.

 As a rule, all criteria are focused on testing the simple hypothesis H0 on the interval [0, 1]. In case it is necessary to 

test the membership hypothesis of the sample Х1, Х2, ..., Хn to the uniform law in the interval [a, b] (with shift parameter a and 

scale parameter b – a), to use all the uniformity criteria of the elements x(i) of the variational series a < x(1) < x(2) < ... < x(n) < b, 

built on the sample Х1, Х2, ..., Хn, one transforms to the corresponding (required by criteria) order statistics as follows: U(i) = 

= (x(i) – a)/(b – a), i = 1, ..., n, U0 = 0, Un+1 = 1. All the remaining order in applying the criteria for checking uniformity re-

mains unchanged (as in the interval [0, 1]).

 In verifi cation of a composite hypothesis of uniformity of the form H0: F(x) = (x – a)/(b – a), x ∈ [a, b], where a, b are 

unknown and must be found for the same sample, one proceeds as follows. For elements of a variational series x(1) < x(2) < ... < x(n), 

built on a sample Х1, Х2, ..., Хn , one fi nds estimates of the parameters

 

 It is evident that verifi cation of the composite hypothesis about the membership of Х1, Х2, ..., Хn to the uniform law 

on the interval [å, ∫], obtained for a given sample, is equivalent to the verifi cation of the simple hypothesis of the membership 

of the partial sample of smaller size n – 2 (corresponding to the series x(2) < x(3) < ... < x(n–1)) to the uniform law on the interval 

[x(1), x(n)], which corresponds to the sample range. In this case, in using all the considered criteria, the required values of order 

statistics are found in accordance with the relations

 Ui−1 = (x(i) − x(1)) / (x(n) − x(1)); i = 2, ..., n−1; Un−1 =1.�

DOI 10.1007/s11018-017-1088-4



1035

 To test the hypothesis that a sample belongs to a uniform law, we propose a set of statistical criteria, which can be 

divided into two subsets. The fi rst consists of specifi c criteria, aimed at checking uniformity, and the second – a variety of fi t 

tests, which can also be used to check the uniformity. The existence of multiple criteria poses practitioners a diffi cult choice 

since the available published information does not allow us to uniquely prefer some defi nite criterion.

 This paper deals with the comparative analysis of specifi c criteria, in a subset of which one can identify three main 

groups of criteria of uniformity checks.

 Statistical criteria of the fi rst group include the use of differences of successive values of an ordered series

 

where i = 1, ..., n + 1; n is the sample size; U0 = 0; Un+1 = 1.

 The second group includes various modifi cations of the criteria for using the estimate differences between order 

statistics corresponding to the analyzed sample and, for example, of the expectations of these order statistics.

 The third group includes the so-called entropy criteria based on various estimates of entropy.

 Consideration of competing hypotheses. Testing hypotheses results in two types of errors: a type I error rejects the 

hypothesis H0 when it is true; a type II error accepts (does not reject) the hypothesis H0 when the competing hypothesis H1 is 

valid. The level of signifi cance α gives the probability of a type I error.

 Typically, when using hypothesis testing criteria, one does not consider a specifi c competing hypothesis. In that case, 

when testing hypotheses about the form of the law it can be assumed that the competing hypothesis H1 has the form: H1: F(x) ≠ 

≠ F(x, θ0). If the hypothesis H1 is given and has the form H1: F(x) = F1(x, θ), then the specifi cation of the quantity α to be 

Fig. 1. Probability distribution functions corresponding to competing hypotheses.

Fig. 2. Distribution density of laws corresponding to competing hypotheses.
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used for the hypothesis testing criterion also determines the probability β of a type II error. An error of the second kind is that 

the hypothesis H0 is not rejected when, in fact, the hypothesis H1 is true. The power of the criterion is the difference 1 – β. 

Obviously, the higher the power of the criterion used for a given value α, then the better it distinguishes the hypotheses H0, H1.

 Of greatest interest is the capability of criteria to distinguish between similar competing hypotheses. In analyzing 

similar alternatives, one manages to fi nd the fi ner points that characterize the properties of the criteria and to identify their 

fundamental advantages and disadvantages.

 In this paper, we have studied the power of all the criteria examined with respect to three competing hypotheses that 

correspond to adherence of an observable random variable to the family of beta distributions of the 1st kind with density 

function

 

where B(θ0, θ1) = Γ(θ0)Γ(θ1)/Γ(θ0 + θ1) is the beta function; θ0, θ1 ∈ (0, ∞) are shape parameters; θ2 ∈ (0, ∞) is a scale pa-

rameter; θ3 ∈ (–∞, ∞) is a shift parameter; x ∈ [θ3, θ3 +θ2].

 We denote the beta-distribution of the 1st kind with specifi c parameter values as BI(θ0; θ1; θ2; θ3). Then, the three 

competing hypotheses H1, H2, H3 to be considered and suffi ciently close to H0, take the following form:

 H1: F(x) = BI (1.5; 1.5; 1; 0), x ∈ [0, 1];

 H2: F(x) = BI (0.8; 1; 1; 0), x ∈ [0, 1];

 H3: F(x) = BI (1.1; 0.9; 1; 0), x ∈ [0, 1].

 The probability distribution functions corresponding to these hypotheses under consideration are shown in Fig. 1, 

and the density distributions in Fig. 2. It should be noted that the competing hypothesis H1 corresponds to a law whose distri-

bution function intersects the uniform distribution function; the distribution functions for H2, H3 lie above and below the 

uniform distribution function. The criteria have different capacities to distinguish among the hypotheses H0, H1 and among 

the hypotheses H0, H2, H3.

 Analysis of the power of criteria relative to H1 revealed the inability of the individual criteria for small n samples and 

low levels of signifi cance α to distinguish this hypothesis from H0; that is, it showed the bias of the corresponding criteria (the 

power 1 – β turns out to be less than α). This insuffi ciency turns out to be characteristic not only of the specifi c criteria for 

testing uniformity, but also for most nonparametric agreement criteria [1].

 Research results. As mentioned above, the set of specifi c criteria, whose statistics are presented in Table 1, can be 

divided into three groups according to their closeness to the criteria. The fi rst group of criteria, using the differences between 

the elements of an ordered series include the criteria of Sherman [2, 3], Kimball [4], Moran 1 [5], Moran 2 [6], the refi ned 

Cressie criteria compared to [7] using expressions of the statistics Sn
(m), Ln

(m) [8], Pardo [9], and Swartz [10].

 The second group of criteria, which considers the deviation of order statistics from their mathematical expectations 

(from the median, etc.), are the Hegazy–Green criteria with statistics Т1, Т2 [11], Frosini [12], Young [13], Cheng–Spiring 

[14], Greenwood [15], Greenwood–Quesenberry–Miller [16], Neyman–Barton with statistics N2, N3, and N4 [17].

 The third group includes the entropy criterion of Dudewics–van der Meulen [18] and two modifi cations whose sta-

tistics use other entropy estimates [19].

 In carrying out this work, which is an extension of [20, 21], by using the methods of statistical modeling [22] we 

investigated the distribution statistics of all these criteria, expanded the table of percentage points, checked how the distribu-

tion of the normalized statistics is described by the corresponding asymptotic laws. We investigated the power of criteria with 

respect to different competing hypotheses, in particular with respect to H1, H2, H3. It turns out that a number of the considered 

criteria are displaced with respect to the competing hypothesis H1.

 To prove the fact of displacement, we show in Figure 3 the distribution G(ωn|Hi) of the statistics of the Sherman 

criterion corresponding to the validity of the hypotheses H0, H1 with sample sizes n = 10 and n = 50.



1037

TABLE 1. Testing Criteria for Uniformity

Criteria Statistic

Sherman

Kimball

Moran 1

Moran 2

Cheng–Spiring

Young

Greenwood

Greenwood–Quesenberry–
Miller

Swartz

Hegazy–Green T1

Hegazy Green T1
*

Hegazy–Green T2

Hegazy–Green T2
*

Frosini

Neyman–Barton, N2
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 The right-sided criterion and verifi able hypothesis are rejected at elevated values of the statistic. The distribution of 

the statistic G(ω10|H1), which holds under the validity of H1, is shifted relative to G(ω10|H0) not to the right, but to the left. 

Criteria Statistic

Neyman–Barton, N3
     

Neyman–Barton, N4
     

Dudewics–van der Meulen
 

Modifi cation 1 of entropy 
criterion

     

 

Modifi cation 2 of entropy 
criterion

Pardo

Cressie 1

Cressie 2

Table 1. Continued

Fig. 3. The distribution G(ωn|Hi) of the statistics of the Sherman criterion.
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Consequently, the power 1 – β is less than the corresponding α. With increasing n, the bias disappears (cf. G(ω50|H0)  and 

G(ω50|H1) in Fig. 3).

 Expressions for the statistics of uniformity test criteria considered are shown in the Table 1. In Table 2, special uni-

formity verifi cation criteria are presented in order of descending power relative to competing hypotheses H1, H2, H3 

TABLE 2. Uniformity Criteria Ordered by the Power Relative to Competing Hypotheses H1, H2, H3

Relative to H1

1 – β
Relative to H2

1 – β
Relative to H3

1 – β

n = 10 n = 50 n = 100 n = 10 n = 50 n = 100 n = 10 n = 50 n = 100

Modifi cation 2 of 
entropy criterion

0.265 0.704 0.883 Hegazy–Green Т1 0.178 0.397 0.610 Hegazy–Green Т1 0.149 0.330 0.522

Neyman–Barton N2 0.116 0.525 0.837 Frosini 0.171 0.389 0.603 Frosini 0.148 0.330 0.522

Cressie 2 0.201 0.644 0.820 Hegazy–Green Т2 0.175 0.389 0.602 Hegazy–Green Т1
* 0.145 0.327 0.520

Dudewics–van der 
Meulen

0.254 0.601 0.790
Neyman–Barton 

N2
0.177 0.333 0.597 Hegazy–Green Т2 0.147 0.322 0.508

Modifi cation 1 of 
entropy criterion 

0.254 0.600 0.789
Hegazy–Green 

Т1
* 0.160 0.378 0.595

Hegazy–Green 
Т2

* 0.144 0.319 0.506

Neyman–Barton N3 0.087 0.431 0.766
Hegazy–Green 

Т2
* 0.159 0.371 0.585

Neyman–Barton 
N2

0.137 0.279 0.447

Neyman–Barton N4 0.072 0.371 0.739
Neyman–Barton 

N3
0.177 0.370 0.577

Neyman–Barton 
N3

0.133 0.258 0.416

Cheng–Spiring 0.109 0.388 0.722
Neyman–Barton 

N4
0.177 0.359 0.557

Neyman–Barton 
N4

0.130 0.240 0.381

Swartz 0.154 0.398 0.583 Pardo 0.121 0.296 0.463 Pardo 0.118 0.208 0.291

Hegazy–Green Т1
* 0.101 0.226 0.443

Modifi cation 1 of 
entropy criterion 

0.097 0.189 0.328
Dudewics–van 

der Meulen
0.115 0.191 0.275

Hegazy–Green Т2
* 0.097 0.210 0.409

Dudewics–van 
der Meulen

0.097 0.188 0.327
Modifi cation 1 of 
entropy criterion

0.115 0.191 0.275

Pardo 0.168 0.255 0.408 Cressie 1 0.157 0.239 0.314
Modifi cation 2 of 
entropy criterion

0.114 0.185 0.267

Frosini 0.072 0.177 0.384
Modifi cation 2 of 
entropy criterion

0.095 0.153 0.266 Cressie 2 0.123 0.170 0.226

Hegazy–Green Т1 0.054 0.133 0.322
Greenwood–
Quesenberry–

Miller
0.159 0.204 0.244 Cressie 1 0.118 0.167 0.218

Hegazy–Green Т2 0.060 0.137 0.308 Swartz 0.136 0.184 0.226 Swartz 0.129 0.172 0.206

Greenwood–
Quesenberry–Miller

0.036 0.142 0.290 Cressie 2 0.120 0.140 0.217
Greenwood–
Quesenberry–

Miller
0.119 0.155 0.186

Kimball 0.059 0.160 0.279 Sherman 0.147 0.177 0.204 Kimball 0.116 0.142 0.165

Moran 1 0.059 0.160 0.279 Kimball 0.143 0.174 0.201 Moran 1 0.116 0.142 0.165

Greenwood 0.059 0.160 0.279 Moran 1 0.143 0.174 0.201 Greenwood 0.116 0.142 0.165

Sherman 0.065 0.147 0.215 Greenwood 0.143 0.174 0.201 Sherman 0.117 0.137 0.154

Cressie 1 0.037 0.082 0.187 Moran 2 0.150 0.172 0.193 Moran 2 0.116 0.131 0.143

Moran 2 0.072 0.135 0.187 Cheng–Spiring 0.106 0.134 0.168 Cheng–Spiring 0.100 0.105 0.106

Young 0.090 0.108 0.115 Young 0.108 0.108 0.108 Young 0.102 0.104 0.104
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(according the magnitude of the power 1 – β, when n = 100 and a signifi cance level α = 0.1). Table 2 also shows the power 

estimation criteria for n = 10 and n = 50.

 Some comparative analysis of the criteria of uniformity was carried out in [23]. In [19], the entropy criterion was 

compared with non-parametric agreement criteria. Various estimates of power can be found in other studies.

 A typical disadvantage of most of the applied criteria for uniformity presented in Table 1 is the lack of information 

about the distribution statistics and the forced necessity for the use of tables of critical values (percentage points) that can be 

circumvented in principle with the existence of relevant software [8]. Another disadvantage of most of the criteria is the bias 

relative to competing hypotheses of type H1 (for small sample sizes n and low levels of signifi cance α). In Table 2, the dark 

color indicates criteria that for small n have a pronounced bias relative to the hypothesis H1. To a lesser degree, a bias relative 

to H1 is manifested in the criteria of Neyman–Barton with statistics N2, N3. This drawback is not marked only for certain 

criteria: for the entropy criterion of Dudewics–van der Meulen and its modifi cations, the criteria of Cheng–Spiring, Swartz, 

and Pardo.

 All modifi cations of the criteria used in evaluating the various entropy statistics [18, 19] have shown a relatively high 

power relative to the competing hypothesis H1. At the same time, relative to the hypotheses H2, H3 the estimate of the power 

of these criteria are more modest. It should be noted that only for these criteria, for small n, there are observed signs of bias 

relative to the hypothesis H2.

 The criterion of Neyman–Barton with N2 statistics shows a high power relative to H1 and comparatively good results 

relative to H2, H3. Consistently good ability to distinguish competing hypotheses from the uniform law is demonstrated by 

the criteria Hegazy–Green and Frosini. Low power is demonstrated by the criteria in whose statistics there is a summation of 

moduli or squared differences Ui – Ui–1 of successive values of order statistics (the criteria of Sherman, Kimball, Moran, 

Greenwood, Greenwood–Quesenberry–Miller). Especially low power relative to all three considered hypotheses is seen in the 

Yang criterion [13], which indicates a most unsuccessful attempt to use statistical criteria appropriate for checking the hypoth-

esis of uniformity. It can be assumed that an equally unsuccessful idea would be to use such statistics in any criterion designed 

to test whether the observed sample agrees with some specifi c distribution law.

 On the basis of studies of the properties of the set of criteria used for checking uniformity, we have prepared an ap-

plication guide [8]. For checking a hypothesis about a test sample for adherence to some concrete distribution law there is 

developed a number of specifi c criteria; among this set, as a rule, there are criteria that are preferably applied to limited sample 

sizes and have a signifi cant advantage in power, for example, compared with the general criteria of agreement. In this case 

(when checking for uniformity), such an advantage relative to non-parametric agreement criteria is not observed: stability is 

shown by the criteria of Zhang with statistics ZA, ZC and the criteria of Anderson–Darling test [8].

 From the analysis of the properties of the entire set of criteria that can be used to test the hypothesis of adherence of 

a sample to a uniform law, it follows that the correct use of any one of the criteria for the formation of “reliable” statistical 

inference can often be inadequate. For greater objectivity of statistical inference, it is preferable to use a certain number of 

criteria that have defi nite advantages. Using a set of criteria, based on various measures of deviation of an empirical distribu-

tion from the theoretical, mproves the quality of statistical inferences.

 A bias relative to certain proximate competing hypotheses for small n is exhibited not only for uniform criteria. There 

is a similar defi ciency in some criteria used to verify normality [24–26].

 This work was performed with the support of the Ministry of Education and Science of Russia within the State Work 

“Provision of Scientifi c Research” and the project part of the State Assignment (Project No. 2.541.2014K).
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