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The application of the nonparametric Anderson–Darling, Cramer–Mises–Smirnov, Kuiper, Watson, Kolmo-

gorov, and Zhang goodness-of-fi t tests in verifi cation of simple and composite hypotheses is considered. 

Based on an investigation of the power, it is shown for the fi rst time that there exist pairs of competing hy-

potheses which these tests are not able to distinguish in the case of small sample sizes n and type 1 error 

probabilities. It is shown that the reason for this lies in the bias of the tests in corresponding situations.

Keywords: Anderson–Darling test, Cramer–Mises–Smirnov test, Kuiper test, Watson test, Kolmogorov test, 

Zhang test, power of test.

 Using tests to verify statistical hypotheses in the analysis of the results of experiments, the researcher will now and 

then blindly trust in the results of an inference without thinking that the test is itself a mathematical tool intended for the 

measurement (detection, estimation) in analyzed data of some deviation from previous suggestions, and that this tool also 

requires appropriate “adjustment and verifi cation.” The set of statistical “tools” the use of which is justifi ed for measurement 

of corresponding quantities is quite broad, and the tools themselves belong to different “accuracy classes.” The skillful appli-

cation of any measuring tool presupposes knowledge of its capabilities and fi eld of application.

 It is with this in mind that we wish to discuss certain facts that attest to the limiting capabilities of nonparametric 

goodness-of-fi t tests (Kolmogorov, Cramer–Mises–Smirnov, Anderson–Darling, Kuiper, Watson, and Zhang goodness-of-fi t 

tests) in distinguishing between probability distribution laws. The existence of such facts in connection with nonparametric 

goodness-of-fi t tests has not been previously reported in the literature. Knowledge of these facts will help achieve a more 

understandable interpretation of the results from the use of tests for the verifi cation of statistical hypotheses.

 Recall that when goodness-of-fi t tests are used it is necessary to distinguish between verifi cation of simple and 

composite hypotheses. A simple verifi able hypothesis has the form H0: F(x) = F(x, θ), where F(x, θ) is a probability distri-

bution function with which the goodness of fi t of an observed sample is verifi ed and θ a known value of a parameter (scalar 

or vector).

 A composite verifi able hypothesis has the form H0: F(x) ∈ (F(x, θ), θ ∈ Θ}, where Θ is the domain of defi nition of 

the parameter θ. A difference arises if in the course of verifi cation of a composite hypothesis an estimator q of the distribution 

parameter is calculated on the same sample based on which the goodness of fi t is verifi ed, since in that case the distribution 

of the statistic corresponding to the validity of the hypothesis H0 differs signifi cantly from that which exists in the case of a 

simple verifi able hypothesis [1].

 In the process of verifying a hypothesis H0 of the membership of a sample to a law with distribution function F(x, θ), 

the Kolmogorov goodness-of-fi t test [2] relies on the statistic
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where Fn(x) is an empirical distribution function; F(x, q), the distribution function of the law; q, estimator of the vector of 

parameters found from the same sample; and n, size of sample.

 In verifying a hypothesis with the use of the Kolmogorov goodness-of-fi t test it is recommended that a statistic with 

Bol’shev correction in the form [2]

 

where

 

x(1) ≤ x(2) ≤ ... ≤ x(n), here and below, elements of a variational series constructed from an initial sample X1, X2, ..., Xn, should 

be used.

 In verifi cation of a simple hypothesis H0, the statistic obeys a Kolmogorov distribution K(s) [2].

 The quantity

 

where Dn
+ and Dn

– are defi ned above, is used as a measure of the distance between the empirical and theoretical law in the 

Kuiper goodness-of-fi t test.

 The statistic [4]

 

or the statistic [5]

 

may be used as the statistic of the test.

 The limiting distribution of these statistics where the simple hypothesis H0 is valid was found in [3] and presented 

in [1].

 The ω2 statistic of the Cramer–Mises–Smirnov goodness-of-fi t test has the form

 

 In the case of a simple verifi able hypothesis when the parameters of the theoretical law F(x, θ) are known, this sta-

tistic (where the H0 hypothesis is valid) obeys in limit a law with distribution function a1(s) [2].

 The statistic of the Watson goodness-of-fi t test [6, 7] is used in the following form which is convenient for 

calculations:

 

 The limiting distribution of this statistic where the simple verifi able hypothesis is valid is found in [6, 7].

 The statistic

 

is used in the Anderson–Darling goodness-of-fi t Ω2 test [8, 9].
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 If a simple verifi able hypothesis H0 is valid when the parameters of the theoretical law F(x, θ) are known, this sta-

tistic in limit obeys a law with distribution function a2(s) [2].

 Nonparametric goodness-of-fi t tests whose statistics have the following form are proposed in [10, 11]:

 

 

 

 The use of goodness-of-fi t tests with these statistics complicates the strong dependence of the distributions of the 

statistics on the sample size n.

 In verifi cation of composite hypotheses when the parameters of an observed probability distribution law are estimat-

ed on the same sample, all of the nonparametric goodness-of-fi t tests that are being considered here lose the property of being 

“distribution-free” [12]. Moreover, the limiting distributions of the statistics of nonparametric goodness-of-fi t tests depend on 

a number of factors that defi ne the “complexity” of the hypothesis.

 The distribution law of the statistic G(SǀH0) is infl uenced by the following factors [1]:

 • form of the observed distribution law F(x, θ) corresponding to the true hypothesis H0;

 • type of estimated parameter and number of observed parameters;

 • concrete value of parameter in certain situations, for example, in the case of gamma and beta distributions; and

 • method used to estimate the parameters.

 Questions related to verifi cation of composite hypotheses with respect to different distribution laws and the construc-

tion of models of limiting distributions of the statistics of the goodnesss-of-fi t tests enumerated above have been discussed in 

a number of studies [13–18]. Recommendations on the use of goodness-of-fi t tests in verifi cation of simple and composite 

hypotheses may be found in the applications handbook [1].

 Using a goodness-of-fi t test, the experimenter may propose that a particular test being used constitutes a tool that, in 

principle, may be applied to distinguish a law F(x, θ) corresponding to a verifi able hypothesis H0 from (similar) competing 

distribution laws. Recall that two types of errors are associated with the verifi cation of statistical hypotheses. Errors of the fi rst 

kind consist in a deviation of a valid verifi able hypothesis H0 and its probability is denoted α. An error of the second kind 

Fig. 1. Densities corresponding to normal law (H0) and generalized 

normal law (H1).
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consists in a nondeviation of H0 in the case where some competing hypothesis H1 is valid and its probability is denoted β. The 

experimenter’s assumption as to the desired properties of a goodness-of-fi t test includes the requirement that it be unbiased, 

i.e., that for any given probability of an error of the fi rst kind α and any competing hypothesis H1 (any competing law), 

the power of the test 1 – β relative to H1 must obey the inequality α ≤ 1 – β.

 Examples that demonstrate the bias of nonparametric goodness-of-fi t tests relative to certain competing hypotheses 

are not found in the literature. Apparently, most of tests used under practical conditions are asymptotically unbiased, and 

“fl aws” appear in the case of limited sample sizes and relatively similar competing hypotheses.

 In [19, 20], bias (in the case of limited sample sizes n and low α) of a whole series of special tests (Shapiro–Wilk, 

Epps–Palley, Hegasi–Green, Spigelhapter, Roystone) was found in a study of the properties of a set of tests oriented towards 

the verifi cation of normality. A generalized normal law with density

 

TABLE 1. Power of Zhang Goodness-of-Fit Test zA Relative to Hypothesis H1

n
α

0.15 0.1 0.05 0.025 0.01

10 0.127 0.078 0.033 0.014 0.005

20 0.148 0.090 0.036 0.014 0.004

30 0.199 0.128 0.056 0.023 0.006

40 0.263 0.180 0.087 0.039 0.012

50 0.333 0.239 0.127 0.063 0.022

100 0.650 0.548 0.389 0.259 0.139

150 0.844 0.775 0.641 0.503 0.335

200 0.939 0.901 0.815 0.706 0.545

300 0.992 0.985 0.962 0.923 0.841

TABLE 2. Power of Zhang Goodness-of-Fit Test zC Relative to Hypothesis H1

n
α

0.15 0.1 0.05 0.025 0.01

10 0.163 0.101 0.041 0.017 0.004

20 0.211 0.130 0.049 0.014 0.002

30 0.277 0.179 0.071 0.020 0.002

40 0.348 0.238 0.104 0.033 0.003

50 0.421 0.300 0.142 0.049 0.005

100 0.715 0.599 0.390 0.201 0.045

150 0.879 0.806 0.635 0.420 0.150

200 0.955 0.917 0.808 0.634 0.322

300 0.995 0.988 0.961 0.895 0.688
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and shape parameter θ2 = 4 is considered as the competing hypothesis H1. The corresponding density of the normal and of the 

generalized normal law are represented in Fig. 1. The competing hypothesis H1, which corresponds to a generalized normal 

law with shape parameter θ2 = 4, constitutes a “litmus paper” on which previously concealed drawbacks of the set of tests 

becomes apparent.

 The nonparametric goodness-of-fi t tests (Kolmogorov, Kuiper, Cramer–Mises–Smirnov, Watson, and Anderson–

Darling tests) have been shown to be nonbiased relative to a given pair of hypotheses [21]. However, the Zhang goodness-of-

fi t tests with statistics ZC and ZA in verifi cation of normality relative to the same competing hypothesis exhibit substantial 

bias [21]. Estimators of the power of the Zhang goodness-of-fi t test with statistic ZA with respect to a competing hypothesis 

H1 are presented in Table 1, and with the statistic ZC, in Table 2.

 Estimators of power less than α are indicated by gray shading in Tables 1 and 2. Figuratively speaking, from the stand-

point of a goodness-of-fi t test, this means that the law corresponding to H1 is “more normal than normal.” Thus, a goodness-of-

fi t test with statistic ZA for n = 10 or 20 cannot distinguish a law corresponding to the hypothesis H1 from a normal law.

 Note that in the general case, the Anderson–Darling, Watson, and Cramer–Mises–Smirnov goodness-of-fi t tests (and 

even the Zhang goodness-of-fi t test with statistics ZA and ZC) are not so greatly inferior in power (and not always) to special 

normality criteria.

 It should be noted that the situation that has been described here as regards the bias of Zhang goodness-of-fi t tests 

with statistics ZA and ZC in verifi cation of normality is not the only example with such a drawback relating to the use of non-

parametric goodness-of-fi t tests. Another example has to do with the verifi cation tests of (simple and composite) hypotheses 

on the membership of analyzed samples to a uniform law and the use for these purposes, in particular, of nonparametric 

goodness-of-fi t tests.

 In this case, a uniform law on the interval [0, 1] corresponds to a simple verifi able hypothesis H0, while membership 

of an observable random variable, to a beta distribution of the fi rst kind with density function

 

where B(θ2, θ1) = Γ(θ0) Γ(θ1)/Γ(θ0 + θ1) is a beta function with values of the parameters θ0 = 1.5, θ1 = 1.5, θ2 = 1, and θ3 = 0, 

corresponds to a competing hypothesis H1.

 The probability distribution functions corresponding to these hypotheses intersect, while the density distributions 

presented in Fig. 2 illustrate the essential difference between the competing laws.

 From an investigation of the distributions of the statistics and an analysis of the power of goodness-of-fi t tests rela-

tive to H1 performed in [22], it may be established that the series of special tests oriented towards the verifi cation of a hypoth-

esis of uniformity (Moran, Sherman, Greenwood, Yang, Hegasi–Green, and others) are not capable of distinguishing this 

hypothesis from H0 in the case of small sample sizes n and low signifi cance levels α.

 It turns out that most of the nonparametric goodness-of-fi t tests considered in [22] (except for the Kuiper and Watson 

tests) also suffer from this drawback to a signifi cant extent, the cause of which is seen in the bias of the corresponding tests.

Fig. 2. Densities corresponding to 1) uniform law (H0) and 2) beta 

distribution of the fi rst kind (H1).
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 Estimators of power relative to the hypothesis H1 are presented in Table 3 for the Anderson–Darling goodness-of-fi t 

test used for verifi cation of uniformity as an illustration of such a situation for a concrete example. Cells of the table with 

estimators of power less than the corresponding value of α are distinguished by gray shading. The distribution G(S|H0) of the 

statistic of this test where the verifi able hypothesis H0 is valid and the distributions G(Sn|H1) of its statistic where H1 is valid 

(for sample sizes n = 10, 20, 100, 300) are shown in Fig. 3. The distributions of the statistic G(Sn|H1) with n = 10 or 20 inter-

sect G(S|H0), which explains why the power 1 – β proves to be less than the specifi ed value of α. In Fig. 3, the distribution 

G(S|H0) is shown only for n = 10. With n ≥ 20, the distributions G(Sn|H0) cannot be distinguished visually from G(S10|H0) and 

practically coincide with the limiting distribution of the statistic of the Anderson–Darling goodness-of-fi t test in verifi cation 

of simple hypotheses a2(s).

 The examples that have been considered here demonstrate the bias of nonparametric goodness-of-fi t tests in the case 

of small sample sizes n and low signifi cance levels α relative to certain pairs of competing hypotheses. This is apparently 

the fi rst mention of the existence of this type of drawback of nonparametric goodness-of-fi t tests. Hence, it follows that the 

correct use of some test for the creation of a “reliable” statistical inference often may prove to be inadequate. The use of a set 

of tests that rely on different measures of deviation of an empirical distribution from the theoretical improves the quality of 

statistical inferences.

Fig. 3. Distribution G(S|H0) and G(Sn|H1) of the statistic of the Anderson–Darling 

goodness-of-fi t test. 

TABLE 3. Power of Anderson–Darling Goodness-of-Fit Test Relative to Hypothesis H1

n
α

0.15 0.1 0.05 0.025 0.01

10 0.095 0.053 0.019 0.007 0.002

20 0.140 0.078 0.028 0.010 0.003

30 0.196 0.114 0.042 0.014 0.004

40 0.258 0.156 0.060 0.021 0.005

50 0.325 0.206 0.084 0.031 0.007

100 0.652 0.505 0.283 0.134 0.041

150 0.861 0.760 0.544 0.332 0.138

200 0.954 0.904 0.762 0.565 0.311

300 0.998 0.990 0.959 0.882 0.702
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 Through knowledge of the actual properties of tests and of the drawbacks of these tests that have been noted in the 

present article and observance of the recommendations of [1, 21, 22] that determine whether it is correct to use certain tests, 

specialists involved in the solution of problems of statistical analysis in the processing of the results of measurements in a 

particular application domain will be able to approach the selection of tests in a more rational manner without being con-

cerned with the use of a particular test.

 In conclusion, we would like to turn the reader’s attention to the fact that, in our view, the use of methods of sta-

tistical analysis in problems of metrology and standardization lags considerably behind the level of development of modern 

applied mathematical statistics. This has to do both with the range of methods employed and their correct use, in particular, 

descriptions of the use of statistical tests in regulatory documents. For example, it would be useful to make corrections in the 

standard [23], where there are serious errors in the description of tests recommended for use in verifi cation of normality. Of no 

lesser importance is the fact that the reasons for such states derive from the fact that out-of-date information and methods are 

published in textbooks in the series, Standardization and Metrology [24].

 The present study was carried out with the support from the Ministry of Education of Russia within the framework 

of the design part of State Assignment No. 2.541.2014/K.
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