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GENERAL PROBLEMS OF METROLOGY 
AND MEASUREMENT TECHNIQUE

APPLICATION AND POWER OF PARAMETRIC 

CRITERIA FOR TESTING THE HOMOGENEITY 

OF VARIANCES. PART III

B. Yu. Lemeshko and T. S. Sataeva UDC 519.24

The distributions of the statistics of parametric tests (Neyman–Pearson, O’Brien, Link, Newman, Bliss–

Cochran–Tukey, Cadwell–Leslie–Brown, and the Overall–Woodward Z-variance and modifi ed Z-variance 

tests) are studied, including the case in which the standard assumption of normality is violated. A compar-

ative analysis of the power of the set of parametric tests is carried out.
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 This article is a continuation of a cycle of studies of criteria for testing the homogeneity of variances and of estimates 

of the power of these tests for different distribution laws and relatively small sample sizes by computer simulation. Tests of the 

hypothesis of the homogeneity of variances are used for analyzing the results of measurements. In metrology, they are often 

used in comparisons of laboratory tests. The test hypothesis of uniformity of variances in the case of m samples has the form

  (1)

The competing hypothesis is usually considered to be

  (2)

where the inequality is satisfi ed for at least one pair of subscripts i1, i2. Some of these tests can be used only for m = 2.

 The quality of the statistical conclusions resulting from the test is ensured by the correctness of the tests with higher 

power that are applied. The standard assumption for applicability of the classical parametric tests is that the analyzed samples 

adhere to a normal law. Nonparametric tests are not subject to this kind of limit.

 The power and properties of parametric (Bartlett, Cochran, Fisher, Hartley, Levene) and nonparametric (Ansari–

Bradley, Mood, Siegel–Tukey, Capon, Klotz) tests have been compared in [1–4], including under conditions such that the 

standard assumption is violated. It was shown that, for m = 2, the parametric Bartlett, Cochran, Fisher, and Hartley tests are 

equivalent, and, for m > 2, the Cochran test is to be preferred. Here the power of the parametric tests is considerably higher 

than that of their nonparametric analogs, so it is necessary to reconsider the feasibility of using the parametric tests when the 

assumption of normality is violated [3, 5]. The sphere of applications for the nonparametric tests is limited by the assumption 

that the samples to be analyzed obey the same distribution law [2, 3].

 In this paper, the conclusions of [1–4] are supplemented by studies of the following parametric tests of homogeneity 

of variances: Neyman–Pearson [6], O’Brien [7], Link (ratio of ranges) [8], Newman (studentized range) [9], Bliss–Cochran–

Tukey [10], Cadwell–Leslie–Brown [11], Overall–Woodward Z-test [12], and the modifi ed Overall–Woodward Z-test [13].
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 The distributions of the statistics have been studied and the powers of the tests relative to different competing hypoth-

eses have been estimated using statistical modelling based on the ISW program package [14, 15]. N = 106 runs of the statistical 

simulations were carried out for modelling this set of statistics. As a rule, for these values of N the absolute value of the differ-

ence between the true distribution of the statistic and the empirically simulated distribution does not exceed 10–3.

 When the assumption of normality was violated, the distributions of the statistics of the tests were studied for the 

case in which the samples belong to a generalized normal law with density

  (3)

where θ0, θ1 ∈ (0, ∞), θ2 ∈ (–∞, ∞), and x ∈ (–∞, ∞).

 The distribution of the statistics of the tests was estimated for different values of the parameter θ0. Some special 

cases of this family of distributions include the normal law for θ0 = 2 and the Laplace distribution for θ0 = 1. When the shape 

factor θ0 is smaller, the tails of distribution (3) are heavier and, vice versa, when this parameter is larger, the tails are lighter. 

This analysis of the distributions of the statistics of parametric tests of the homogeneity of dispersions shows that these dis-

tributions depend strongly on the form of the observed distribution law. Besides the Levene test [2], only the O’Brien test and 

the modifi ed Z-test manifested a certain stability.

 The Neyman–Pearson test (likelihood ratio test). The statistic for this test is given by the ratio of the arithmetic 

mean for all the estimates si
2 of the variances to their geometric mean[ 6]:

  (4)

where m is the number of samples; ni are the volumes of the samples;

 

are the estimates of the sample variances;

 

are the sample means; and xij is the jth element of the ith sample. It is assumed that n1 = n2 = ... = nm = n. The hypothesis to be 

tested, H0 (see Eq. (1)), is rejected for large values of statistic (4) such that h > h1–α (α is a specifi ed level of signifi cance).

 Refi ned studies of the percentage points (assuming normality) and the dependence of distribution (4) on n and m are 

described in [16]. Tests with statistic (4), as in the case of any of the tests discussed below, can also be used for unequal ni, 

but then the distributions of the statistics (when hypothesis (1) is true) will differ from the distributions for equal ni. The tests 

are extremely sensitive to failure of the assumption of normality.

 The O’Brien test. For calculating the statistic for the test [7] each jth element of the ith sample, xij, is transformed 

in accordance with the formula

 

where xi is the average value.

 The test statistic has the form

 V =
1

m−1
ni (Vi −Vi )

2

i=1

m

∑ 1
N −m

(Vij −Vi )
2

j=1

ni

∑
i=1

m

∑ ,   (5)

where
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 Vi =
1

ni
Vij

j=1

ni

∑ ; Vi =
1

N
Vij

j=1

ni

∑
i=1

m

∑ ; N = ni
i=1

m

∑ . 

 The test is right-sided and the test hypothesis H0 (see Eq. (1)) is rejected for large values of the (5) statistic. The 

limiting distribution of the statistic for the O’Brien test when H0 holds is the Fisher Fm–1,N–m-distribution with m – 1 and N – m 

degrees of freedom [7]. Our studies showed that the distributions of statistic (5) converge fairly slowly to Fm–1,N–m-dis-

tributions. For example, in the case of m = 2, the difference between the real distribution G(V|H0) of the statistic (5) and the 

F1,N–m-distribution can be neglected only for n1 = n2 = n ≥ 80. For small sample volumes, a signifi cant difference between the 

distribution G(V|H0) of the statistic and the Fm–1,N–m-distribution is observed for large values of V. Thus, using the percentage 

points of the Fm–1,N–m-distribution leads to an increase in the probability of type II β errors.

 For N – m ≤ 80, the distributions G(V|H0) for values of the statistic V such that 1 – G(V|H0) < 0.1 are closer to the 

Fm–1,∞-distribution than to the Fm–1,N–m-distribution. For N – m ≤ 80, the correctness of the conclusions can be increased if 

the Fm–1,∞-distribution is used to estimate the attained level of signifi cance pvalue = 1 – Fm–1,∞(V), or if we rely on the upper 

critical values of the statistic (with different m for n1 = n2 = n ≤ 80) [16].

 The distributions of the statistic for the O’Brien test (like the Levene test [2]) are fairly stable with respect to failure 

of the standard assumption of normality. Deviations toward distributions with lighter tails than the normal law essentially 

have no effect on the distribution of the statistic. For distributions with heavier tails, the deviations from the distributions 

corresponding to a normal law are not so large as in the case of other parametric tests.

 The Link test (ratio of ranges). This test is an analog of the Fisher test. It is used only for analyzing two samples. 

The statistic for the test is defi ned as [8]
  (6)

where ωn1
= x1max − x1min, ωn2

= x2max − x2min   are the spreads; and x1max, x2max, x1min, x2min are, respectively, the maxi-

mum and minimum elements in the samples being compared.

 The test hypothesis is rejected with a signifi cance level of α if F* > F*
1–α/2 or F* < F*

α/2, where F*
1–α/2, F*

α/2 are the 

upper and lower critical values of the statistic. The distribution of the test statistic depends substantially on the volumes of the 

samples being compared. Refi ned lower and upper percentage points for statistic (6) in the case where the samples obey a 

normal law for n1, n2 ≤ 20 are given in [16]. This test is extremely sensitive to any deviations from normality.

 The Newman test (studentized range). The test statistic is [9]

  (7)

where ωn1
= x1max − x1min; sn2 =

1

n2 −1
x2i − x2( )2

i=1

n2

∑
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

1/2

. 

 The (1) tested hypothesis of equality of the variances is rejected if q < qα/2 or q > q1–α/2, where qα/2, q1–α/2 are, re-

spectively, the lower and upper critical values of the statistic for a given level of signifi cance α. Refi ned lower and upper 

critical values of statistic (7) are given in Ref. 16. This test has the same shortcomings as the Link test.

 The Bliss–Cochran–Tukey test. The statistic for this test [10] proposed as an analog of the Cochran test is given by

 

where is the spread in the ith sample.

 If the statistic c > c1–α, where c1–α is the upper critical value for a specifi ed level of signifi cance α, then the test hy-

pothesis H0 of equal dispersions is rejected. The upper critical values of the statistic for volumes n1 = n2 = n ≤ 20 and m ≤ 10 

when the normality assumption is satisfi ed are given in [16].

 The distributions of the test statistic depend strongly on the volume and quality of the samples being compared and 

change when the normality assumption fails.
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 The Cadwell–Leslie–Brown test. The statistic for this test, proposed as an analog of the Hartley test, is [11]

  (8)

 The test hypothesis H0 is rejected for K > K1–α, where K1–α is the upper critical value of the statistic. Refi ned critical 

values K1–α of statistic (8) for m ≤ 10 samples with equal sample volumes n1 = n2 = n ≤ 20, i = 1, ..., m, are given in [16]. The 

properties of the test are similar to those of the preceding test.

 The Overall–Woodward Z-test. The statistic for this test is given by [12]

  (9)

where

TABLE 1. Power of Tests with Respect to the Hypothesis H1: σ2 = 1.1σ0

Test α
Sample volume n

10 20 40 60 100

Bartlett, Cochran, Hartley, Fisher, 
Neyman–Pearson, Z-test

0.1 0.112 0.128 0.157 0.188 0.246

0.05 0.058 0.068 0.090 0.111 0.156

0.01 0.012 0.016 0.023 0.032 0.051

Modifi ed Z-test, O’Brien

0.1 0.109 0.125 0.154 0.184 0.243

0.05 0.056 0.066 0.087 0.108 0.153

0.01 0.012 0.015 0.022 0.030 0.049

Link

0.1 0.110 0.123 0.150 0.176 0.228

0.05 0.056 0.065 0.084 0.103 0.141

0.01 0.012 0.014 0.021 0.028 0.044

Newman

0.1 0.111 0.123 0.143 0.159 0.186

0.05 0.57 0.066 0.080 0.091 0.112

0.01 0.012 0.015 0.020 0.025 0.033

Bliss–Cochran–Tukey,
Cadwell–Leslie–Brown, Link

0.1 0.111 0.119 0.133 0.141 0.154

0.05 0.057 0.063 0.072 0.078 0.087

0.01 0.012 0.014 0.018 0.019 0.023

Mood

0.1 0.111 0.120 0.43 0.166 0.211

0.05 0.057 0.064 0.080 0.096 0.128

0.01 0.012 0.014 0.020 0.026 0.039

Ansari–Bradley

0.1 0.101 0.125 0.135 0.154 0.190

0.05 0.052 0.064 0.074 0.087 0.113

0.01 0.011 0.014 0.019 0.023 0.033

Siegel–Tukey

0.1 0.106 0.121 0.135 0.154 0.190

0.05 0.055 0.062 0.075 0.087 0.113

0.01 0.011 0.010 0.018 0.023 0.033
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 When the test hypothesis in (1) is true and the analyzed samples are normally distributed, the limiting distribution of 

statistic in (9) is the Fisher Fm–1,∞-distribution. For small ni, however, distribution (9) differs substantially from the Fm–1,∞-dis-

tribution. The difference between the real distribution of the statistic and the Fm–1,∞-distribution can be neglected for ni ≥ 50. 

When ni ≤ 50, tables of the upper critical values of Z1–α [16] can be used. The distribution of the statistic in (9) for the Z-test 

is very sensitive to failure of the normality assumption.

 The modifi ed Z-test. As a more stable test, a modifi ed statistic has been proposed [13] with

  (10)

where

 

is the estimated excess coeffi cient for the ith sample and

 

 Our studies showed that the distribution of the modifi ed statistic converges to the Fm–1,∞-distribution very slowly as 

ni increases. Even for large sample volumes, the distribution of the modifi ed statistics is not consistent with the Fm–1,∞-dis-

tribution, although in the region of large values the difference between it and the Fm–1,∞-distribution is insignifi cant. For a 

correct application of the test with small sample volumes, a table [16] of the critical values can be used.

 The distribution of the statistic for the modifi ed Z-test actually does have greater stability with respect to failure of 

the standard assumption of normality. Equation (10), however, does not have the required accuracy, since, in the case of the 

modifi ed Z-test, the monotonic dependence of the distributions of the statistics on the degree of deviation of the observed 

distribution from normal common to all parametric tests breaks down.

 Analysis of the power of the tests. The power of the individual tests has been examined in [1–3, 17–19]. In this 

article, for a comparative analysis, as competition to the test hypothesis H0, we consider the situation where m – 1 of the 

samples belong to a distribution law with some σ = σ0 and one of the samples, say number m, belongs to a law with another 

σ (H1: σm = 1.1σ0; H2: σm = 1.5σ0). Besides the previously examined tests, we compare the Bartlett, Cochran, Hartley, Fisher, 

and Levene distributions, as well as the nonparametric tests of Mood, Ansari–Bradley, and Siegel–Tukey, the powers of which 

are taken from Refs. 2 and 3. The estimated powers of the entire set of tests with adherence to normality (for α = 0.1, 0.05, 

0.01 and m = 2) are listed in Tables 1 and 2, where the tests are ordered in terms of decreasing power.

 The Neyman–Pearson and Overall–Woodward Z-test were equivalent in power to the Bartlett, Cochran, Hartley, and 

Fisher tests. A difference in the powers of the modifi ed Z-test and the O’Brien test is noticeable only for a rather distant com-

peting hypothesis H2 (see Eq. (2)). There they have an advantage in power over the Levene test.

 The Newman test falls behind the Levene test in terms of power more noticeably as the sample volumes increase. At 

the same time, it has an obvious advantage (except for the size of volume n = 10) over the Bliss–Cochran–Tukey, Cadwell–

Leslie–Brown, and Link tests, which are equivalent in power.

 The group of “stable” tests (modifi ed Z-test, O’Brien test, and Levene test) for small sample sizes (see for n = 10) has 

less power than the Newman, Link, Bliss–Cochran–Tukey, and Cadwell–Leslie–Brown tests, but with increasing n it has an ob-

vious advantage over these and over the nonparametric tests. Within this group, the O’Brien test has some remaining advantage.

 The Newman, Bliss–Cochran–Tukey, Cadwell–Leslie–Brown, and Link tests have a slight advantage in power over 

the nonparametric tests only for small sample sizes (n = 10–20), but they fall signifi cantly behind the nonparametric tests as 

the sizes increase.
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 The Bartlett, Cochran, Hartley, Levene, Neyman–Pearson, O’Brien, Bliss–Cochran–Tukey, and Cadwell–Leslie–

Brown tests, as well as the Overall–Woodward Z-test and modifi ed Z-test, can be used for m > 2. Here, the Bartlett, Cochran, 

Hartley, Neyman–Pearson, and Overall–Woodward Z-tests no longer form a group of equivalent tests with the same power. 

The Bartlett and Neyman–Pearson tests, which are still essentially equivalent in terms of power, are the only exceptions.

 Tables 3 and 4 list the estimated powers of the multi-sample tests (for m = 3, m = 5 and for ni = 100, i = 1, ..., m) with 

respect to the competing hypotheses H1 and H2 (with a distinct variance for one of the samples) where the analyzed samples 

are normally distributed. These tests are listed in order of decreasing power, so that the preferability of one test over another 

can be established.

TABLE 2. Power of Tests with Respect to the Hypothesis H2: σ2 = 1.5σ0

Test α
Sample volume n

10 20 40 60 100

Bartlett, Cochran, Hartley, Fisher, 
Neyman–Pearson, Z-test

0.1 0.312 0.532 0.806 0.926 0.991

0.05 0.201 0.402 0.705 0.871 0.980

0.01 0.064 0.182 0.463 0.692 0.924

O’Brien

0.1 0.266 0.490 0.783 0.917 0.990

0.05 0.155 0.344 0.664 0.849 0.976

0.01 0.039 0.127 0.379 0.628 0.903

Modifi ed Z-test

0.1 0.265 0.489 0.781 0.916 0.990

0.05 0.158 0.348 0.666 0.849 0.976

0.01 0.043 0.138 0.397 0.639 0.906

Link

0.1 0.269 0.471 0.746 0.888 0.981

0.05 0.163 0.338 0.628 0.812 0.960

0.01 0.045 0.131 0.364 0.590 0.866

Newman

0.1 0.296 0.473 0.682 0.796 0.901

0.05 0.190 0.348 0.566 0.699 0.840

0.01 0.060 0.153 0.326 0.473 0.667

Bliss–Cochran–Tukey,
Cadwell–Leslie–Brown, Link

0.1 0.285 0.425 0.584 0.674 0.776

0.05 0.181 0.305 0.458 0.554 0.671

0.01 0.057 0.127 0.237 0.314 0.430

Mood

0.1 0.255 0.425 0.688 0.841 0.964

0.05 0.158 0.302 0.565 0.751 0.931

0.01 0.045 0.121 0.319 0.518 0.802

Ansari–Bradley

0.1 0.242 0.393 0.608 0.768 0.926

0.05 0.150 0.270 0.484 0.659 0.869

0.01 0.041 0.104 0.254 0.413 0.693

Siegel–Tukey

0.1 0.246 0.383 0.609 0.768 0.926

0.05 0.155 0.261 0.484 0.659 0.869

0.01 0.043 0.056 0.251 0.414 0.693
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 The fi rst ranking test is the Cochran test, with a clear advantage in terms of power, as in [2]. The second ranked test 

is the O’Brien test, but it does not have signifi cant advantages over the Overall–Woodward Z-tests or the Neyman–Pearson 

and Bartlett tests for analyzing three samples and close competing hypotheses. At the same time, the O’Brien test is more 

powerful than the modifi ed Z-test and the Levene test, which are also stable with respect to violation of the standard assump-

tion of normality. When the competing hypotheses are eliminated, the power of the Bliss–Cochran–Tukey test is higher than 

that of the Cadwell–Leslie–Brown.

 Conclusion. The need to test hypotheses of homogeneity of variances arises during processing of groups of measure-

ment results, including the analysis of results from interlaboratory comparisons. The data shown here can be used to choose 

the most appropriate test.

 It is correct to use the set of parametric tests examined here when the analyzed samples adhere to a normal distribution. 

When this assumption fails, the method recommended in Ref. 16 can be employed to ensure that they are used correctly.

 These studies were supported by the Ministry of Education and Science of the Russian Federation as part of the State 

Program on Support for Scientifi c Research and the project part of the State Assignment (Project No. 2.541.2014.K).

TABLE 3. Power of m-Sample Tests with Respect to Hypothesis H1

Test
m = 3 for different α m = 5 for different α

0.1 0.05 0.01 0.1 0.05 0.01

Cochran 0.250 0.161 0.056 0.241 0.156 0.056

O’Brien 0.243 0.153 0.051 0.230 0.144 0.048

Z-test 0.243 0.153 0.051 0.227 0.141 0.046

Neyman–Pearson, Bartlett 0.242 0.152 0.049 0.224 0.138 0.044

Modifi ed Z-test 0.240 0.150 0.048 0.223 0.137 0.044

Hartley 0.239 0.148 0.046 0.219 0.133 0.040

Levene 0.225 0.139 0.043 0.209 0.127 0.039

Cadwell–Leslie–Brown 0.149 0.083 0.021 0.139 0.075 0.018

Bliss–Cochran–Tukey 0.147 0.082 0.021 0.136 0.075 0.019

TABLE 4. Power of m-Sample Tests with Respect to Hypothesis H2

Test m = 3 for different α m = 5 for different α

0.1 0.05 0.01 0.1 0.05 0.01

Cochran 0.997 0.994 0.974 0.998 0.997 0.987

O’Brien 0.996 0.990 0.961 0.997 0.994 0.976

Z-test 0.996 0.991 0.964 0.997 0.993 0.974

Neyman–Pearson, Bartlett 0.996 0.990 0.962 0.996 0.992 0.970

Modifi ed Z-test 0.995 0.989 0.955 0.996 0.991 0.967

Hartley 0.995 0.988 0.947 0.995 0.989 0.955

Levene 0.990 0.979 0.926 0.991 0.982 0.944

Cadwell–Leslie–Brown 0.820 0.728 0.501 0.829 0.742 0.524

Bliss–Cochran–Tukey 0.795 0.691 0.444 0.783 0.675 0.432
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