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APPLICATION AND POWER OF PARAMETRIC 

CRITERIA FOR TESTING THE HOMOGENEITY 

OF VARIANCES. PART IV
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The application of parametric criteria for testing the homogeneity of variances (Bartlett, Cochran, Fisher, 

Hartley, Levene, Neyman–Pearson, O’Brien, Link, Newman, Bliss–Cochran–Tukey, Cadwell–Leslie–

Brown, the Overall–Woodward Z-test and modifi ed Z-test) is examined, including under conditions such 

that the standard assumption of normality is violated. A comparative analysis is made of the power of the 

criteria. The permissible level of signifi cance is estimated for the case in which the distributions of the 

statistics for the applied tests are unknown.
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 The distributions of the statistics of parametric criteria for the homogeneity of variances are studied in [1], which is 

an extension of [2, 3]: Neyman–Pearson [4], O’Brien [5], Link (ratio of ranges) [6], Newman (studentized range) [7], Bliss–

Cochran–Tukey [8], Cadwell–Leslie–Brown [9], Overall–Woodward Z-test [10], and the modifi ed Overall–Woodward Z-test 

[11]. A comparative analysis of the power of tests is given [1], including estimates of the power for parametric (Bartlett [12], 

Cochran [13], Fisher [14], Hartley [15], Levene [16]) and nonparametric (Ansari–Bradley [17], Mood [18], Siegel–Tukey 

[19]) tests. Descriptions are given for the statistics of all these tests that are intended for testing hypotheses of the homogeneity 

of the variances of m samples H0: σ1
2 = σ2

2 = ... = σm
2. The competing hypothesis is usually taken to be H1: where 

the inequality is satisfi ed for at least one pair of indices i1, i2. These studies showed that:

 1. Parametric tests (in very case, the best representatives of these) have a clear advantage in power compared to the 

nonparametric tests.

 2. The standard assumption validating the use of parametric tests for the homogeneity of variances is that the samples 

to be analyzed adhere to a normal distribution law. When this assumption is violated, there are signifi cant changes in the dis-

tributions of the test statistics corresponding to validity of the hypothesis H0. This excludes the possibility of using the clas-

sical results obtained under the assumption of normality. The exception is the group of stable criteria (O’Brien, Levene, and 

the modifi ed Overall–Woodward Z-test). But in these cases, as well, the dependence on the form of the distribution of the 

sample being analyzed was also traced.

 3. Even if the standard assumption is satisfi ed, the possibility of correct application of a number of parametric tests 

is limited, since the distributions of the statistics are unknown and during hypothesis testing it is necessary to rely of tables of 

critical values for some series of sample volumes, so it is impossible to estimate the attained signifi cance level p.

 4. For limited sample volumes, the distributions of the statistics of parametric tests often differ substantially from the 

known asymptotic distributions of these statistics which occur when the standard assumption is satisfi ed.

 5. The assumption of normality is not imposed on nonparametric criteria in which a hypothesis of equality of scale 

parameters is being tested. However, an equally strong assumption about the homogeneity of the distributions of the samples 

being analyzed must be satisfi ed [3].
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 6. The distributions of the normalized statistics of the nonparametric tests (Ansari–Bradley, Mood, Siegel–Tukey) 

are discrete. For small sample volumes, they differ substantially from the standard normal distribution used to describe them.

 7. The parametric tests have an obvious advantage in power over the nonparametric distributions, even when the 

samples have non-normal distributions [3].

 Dependence of the power of criteria on the form of the distribution. When the standard assumption of normality 

of distributions is violated, the power of the criteria was studied for situations in which the samples adhere to a generalized 

normal distribution with the density

  (1)

where the shape parameter θ0 takes different values.

 Special cases of this family of distributions include the normal distribution with θ0 = 2 and the Laplace distribution 

with θ0 = 1. Estimates of the power of criteria when the samples have generalized normal distributions (1) with different val-

ues of θ0 for sample sizes ni = 100, i = 1, ..., m, are listed in Tables 1 and 2. The notation De(θ0) corresponds to a distribution of 

form (1) with different values of the shape parameter θ0. When the shape parameter θ0 is smaller, the tails of the distribution 

De(θ0) will be heavier, and vice-versa, when that parameter is larger, the tails will be lighter. The competing hypothesis H1 

was taken to be the situation where m – 1 samples adhere to a distribution with σ = σ0 and sample number m has a distribution 

with variance σm = 1.5σ0.

 The criteria are ranked in order of decreasing power when they are applied to a normal distribution (see Table 1 for 

De(2)). The maximum powers obtained for a given distribution are indicated in bold face. The power estimates show that the 

order of preference for the criteria changes with the heaviness of the tails. It can be seen that the Bartlett, Cochran, Hartley, 

Fisher, Neyman–Pearson, and the Overall–Woodward Z-tests remain equivalent in terms of power in situations in which the 

standard assumption of normality fails and the two samples being analyzed have symmetric distributions. Similarly, the Bliss–

Cochran–Tukey, Cadwell–Leslie–Brown, and Link group of criteria remain equivalent in terms of power.

 If the samples have distributions with lighter (compared to a normal distribution) tails, then ordering of the criteria 

in terms of power is the same as for a normal distribution.

 For (symmetric) distributions with heavier tails than normal, the order of preference changes. In the case of heavy 

tails (see Table 1 for De(0.5)), the criteria are ranked as follows:

Mood ≻ Levene ≻ Siegel–Tukey ~ Ansari–Bradley ≻ O’Brien ≻ Modifi ed Z-test ≻ group of criteria 

(Bartlett, Cochran, Hartley, Fisher, Neyman–Pearson, Overall–Woodward Z-test) ≻ group of criteria 

(Bliss–Cochran–Tukey, Cadwell–Leslie–Brown, Link).

 It should be noted that as the heaviness of the tails increases, the power of all these parametric criteria decreases. The 

Newman, Bliss–Cochran–Tukey, Cadwell–Leslie–Brown, and Link criteria have the advantage over the nonparametric criteria 

for arbitrary observed distributions (including for ni = 100), but only for very light tails of the observed distributions. When the 

number of compared samples increases, the situation changes (see Table 2). The groups of equivalent criteria essentially vanish. 

The sole exceptions are the Bartlett and Neyman–Pearson criteria, which remain equivalent in power in any situation.

 In the case of heavy tails, in terms of decreasing power the criteria are ordered as follows:

Levene ≻ O’Brien ≻ Modifi ed Z-test ≻ Bartlett ~ Neyman–Pearson ≻ Overall–Woodward 

Z-test ≻ Hartley ≻ Cochran ≻ Cadwell–Leslie–Brown ≻ Bliss–Cochran–Tukey.

 The results of this comparison can be supplemented by estimates of the power of the power of the Klotz [20] and 

Fligner–Killeen [21] criteria, which are discussed in [22].

 Calculating the attained level of signifi cance. Hypothesis H0 testing based on the attained level of signifi cance p 

is always better justifi ed and more informative than a comparison of the calculated value of a statistic S* with an indication of 
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the critical values taken from the corresponding table of percentage points. In the latter case, it is not clear how well justifi ed 

this decision may be. In the case of a right-sided criterion, p is defi ned by

  (2)

where G(S |H0) is the probability distribution function of the statistic for the applied test when H0 is true.

 In the case of a two-sided criterion, the critical region consists of two parts and p is given by

 p = 2min G(S* H0 ), 1−G(S* H0 ){ }.�  (3)

TABLE 1. Power of the Criteria with Respect to H1 for m = 2

Criterion

De(0.5) De(2) De(5)

Signifi cance level α

0.100 0.050 0.010 0.100 0.050 0.010 0.1 0.05 0.01

Bartlett, Cochran, Hartley, Fisher, 
Neyman–Pearson, Z-tests

0.162 0.091 0.022 0.564 0.438 0.218 0.791 0.689 0.446

Modifi ed Z-test 0.167 0.096 0.024 0.555 0.427 0.205 0.790 0.688 0.446

O’Brien 0.176 0.103 0.029 0.555 0.427 0.205 0.782 0.674 0.420

Link 0.215 0.132 0.040 0.515 0.388 0.180 0.649 0.524 0.283

Mood 0.222 0.138 0.043 0.468 0.344 0.152 0.659 0536 0.298

Siegel–Tukey, Ansari–Bradley 0.213 0.131 0.041 0.405 0.287 0.119 0.542 0.416 0.204

Newman 0.144 0.080 0.020 0.386 0.276 0.116 0.720 0.608 0.370

Bliss–Cochran–Tukey, Cadwell–
Leslie–Brown, Link

0.128 0.069 0.016 0.289 0.190 0.068 0.650 0.527 0.292

TABLE 2. Power of the Criteria with Respect to H1 for m = 5

Criterion

De(0.5) De(2) De(5)

Signifi cance level α

0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010

Cochran 0.134 0.070 0.015 0.624 0.515 0.316 0.869 0.807 0.643

O’Brien 0.160 0.092 0.026 0.575 0.460 0.258 0.815 0.731 0.533

Z-test 0.141 0.074 0.016 0.565 0.445 0.241 0.811 0.722 0.512

Modifi ed Z-test 0.148 0.081 0.019 0.554 0.433 0.228 0.810 0.721 0.514

Bartlett, Neyman–Pearson 0.142 0.075 0.016 0.557 0.434 0.227 0.806 0.713 0.495

Hartley 0.140 0.074 0.016 0.545 0.418 0.204 0.799 0.699 0.459

Levene 0.197 0.119 0.036 0.513 0.390 0.197 0.657 0.542 0.323

Bliss–Cochran–Tukey 0.114 0.059 0.013 0.262 0.170 0.061 0.704 0.601 0.384

Cadwell–Leslie–Brown 0.119 0.062 0.013 0.253 0.158 0.052 0.638 0.513 0.280
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 It is not diffi cult to calculate p using Eqs. (2) or (3) when the distribution of the test statistic is known. If there is no 

information about the distribution of the test statistic and only tables of percentage points are available or the sample volumes 

are relatively small and such that the distribution of the statistic differs substantially from the (asymptotic) limit, then a correct 

calculation of p presents some problems.

 The distributions of most parametric tests for the homogeneity of variances (even in the classical situation) depend 

substantially on the sample volumes. Thus, for testing a hypothesis H0 it is necessary to rely on tables of percentage points 

formulated for bounded sets ni, which often assume equality of the volumes of the samples being compared. However, even 

in these situations the quality of the statistical conclusions can be improved by fi nding an estimate for p.

 At present, because of the improved computational techniques in statistical analysis programs, the role of computer 

methods in studying statistical behavior has expanded. If the distribution of a test statistic used for testing some hypothesis is 

unknown (for given volumes ni) at the start of the test (for various reasons), then it is possible to study the distribution of the 

statistic in real time, i.e., in an interactive mode [23–25]. Then, for example, it is possible to study the unknown distribution of 

the statistic of any test for the homogeneity of variances that depends on the sample volume for those values of ni which corre-

spond to the analyzed samples, and to use the empirical distribution of the statistic found by modeling to estimate the attained 

level of signifi cance. With this approach, the empirical distribution GN(Sn |H0) of the statistic for the corresponding test needed 

for testing the hypothesis is constructed by statistical modeling to an accuracy that depends on the number of runs N in a Monte-

Carlo method [26]. Then, the empirical distribution GN(Sn |H0) and the value S* of the test statistic given by Eq. (2) or (3) are 

used to estimate p. Thus, the results of the statistical simulations in the course of the analysis are used to evaluate progress in the 

testing of the hypothesis. An interactive mode requires the development of a program with parallel processing for speed in the 

modeling and drawing on accessible computing resources [27]. With parallel processing, the time to construct the distribution 

GN(Sn |H0) of the test statistic is insignifi cant against the background of a complete solution of the analysis problem.

 Tests under nonstandard conditions. An interactive mode for studying the distributions of statistics makes it pos-

sible to use tests under conditions such that the standard assumption that the measurement data follow a normal distribution 

is violated. A deviation from normality leads to signifi cant changes in the distribution G(S|H0) of the statistics for testing the 

homogeneity of variances. This applies to a lesser extent to the O’Brien test, the modifi ed Overall–Woodward Z-test, and the 

modifi ed Levene test. This stability of the criteria is “paid for” by a slight reduction in power. Despite their stability, the dis-

tributions G(S |H0) of the statistics for these tests deviate so far from those under the standard assumptions that this cannot be 

ignored when the samples have distributions with heavy tails. Thus, the correctness of the conclusions depends on the accu-

racy with which the distribution G(S |H0) corresponding to the actual measurement conditions is known.

 We now examine the use of an interactive mode for studying G(S |H0) and the accuracy with which the level of sig-

nifi cance p for different criteria for testing the homogeneity of variances can be estimated depending on the number N of runs 

in a simulation of empirical distributions of the statistics, including when the standard assumption of normality is violated. In 

order for the error in estimating p not to exceed 0.01 with confi dence coeffi cient of 0.99, the number N of runs must be on the 

order of 16600, and for the error to be no more than 0.001, N must be on the order of 1,660,000 [26].

 Example 1. Let the test hypothesis be equality of the variances of two successive samples of volume ni = 40, i = 1, 2, 

assuming that they have normal distributions:

 0.205 0.232 –0.219 0.829 0.127 0.939 0.995 0.706 –0.450 –0.361

 –0.364 –0.107 1.054 –0.095 –2.188 0.453 –1.052 0.640 –0.417 –2.144

 –3.473 –0.857 –0.678 0.070 –1.139 0.574 0.409 0.206 0.184 1.273

 –0.326 –1.245 0.227 0.185 0.383 0.126 0.255 1.110 –0.310 –0.178

 0.269 –0.187 –0.013 –1.248 –0.247 –0.541 1.209 –2.814 0.575 –0.452

 –0.427 0.337 1.138 –1.090 –0.858 –0.006 –1.212 –0.180 1.751 –0.485

 –0.779 –0.752 0.342 –0.175 0.509 0.209 0.596 1.869 1.764 1.084

 0.995 0.633 0.003 –0.642 –1.225 –0.115 –1.543 0.137 –1.290 2.189
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 Table 3 lists the values of the statistics calculated during testing of the homogeneity of the variances corresponding to 

these two samples and gives the estimates of p for the simulated distributions of the statistics of the test for N = 104 and N = 106 

assuming a normal distribution for the random quantities. For the tests with known asymptotic distributions of the statistics, 

the table also lists theoretical estimates of p calculated according to these distributions.

 In this case, the test hypothesis H0 is true, but both samples were simulated using a Laplace distribution with σ = 1. The 

last column (Table 3) shows the estimates of p calculated using the distributions of the test statistics for N = 106 under the assump-

tion that the random quantities have a Laplace distribution. There is a signifi cant difference in the estimates of p for the Laplace 

and normal distributions, but for the stable Levene and O’Brien tests, and the modifi ed Z-test, this difference is minimal.

 If the actual distribution has heavier tails than the normal distribution and when the classical results associated with 

normality can be taken into account when using a parametric criterion for the homogeneity of variances, then this leads to an 

increased (compared to the given amount) probability of a type I error and a reduction in the probability of a type II error. If 

the actual distribution has lighter tails, then in the analogous situation this leads to a reduction in the probability of a type I 

error and an increase in the probability of a type II error.

 Example 2. We now test the hypothesis of equal dispersions for three samples, two of which are taken from the pre-

vious example, while the second is listed below:

 0.254 –0.254 –0.017 0.002 1.937 –2.476 –0.092 –0.543 2.588 1.970

 1.869 0.453 –0.616 –2.806 2.382 0.476 0.641 –2.581 –0.659 –0.027

 1.775 2.154 –1.801 –0.774 –0.522 1.413 –0.042 –0.175 –0.929 0.664

 –0.298 0.409 0.040 0.418 0.478 –0.052 –4.354 1.521 –2.126 1.177

 This sample was also modelled with a Laplace distribution but for σ = 1.5.

 Table 4 lists the values of the statistics calculated during testing of the hypothesis of homogeneity of the variances 

corresponding to these three samples. When it is assumed that the samples have normal distributions, theoretical values of p 

TABLE 3. Estimates of the Level of Signifi cance p for Analysis of Two Samples with Valid Hypothesis H0

Criterion Value of statistic

p

Normal distribution Laplace distribution

theoretical estimate N = 104 N = 106 N = 106

Bartlett 0.268028 0.604658 0.605 0.6045 0.734

Cochran 0.541643 – 0.605 0.6045 0.734

Fisher 0.846236 0.604671 0.596 0.6045 0.734

Hartley 1.181700 – 0.605 0.6045 0.734

Neyman–Pearson 1.003490 0.607000 0.605 0.6045 0.734

Z-test 0.279266 0.597183 0.605 0.6045 0.734

Modifi ed Z-test 0.115111 0.734398 0.741 0.7348 0.732

O’Brien 0.162623 0.687856 0.702 0.6971 0.722

Levene 0.604953 – 0.454 0.4451 0.459

Newman 4.564110 – 0.780 0.7777 0.730

Link 0.948631 – 0.806 0.8079 0.877

Bliss–Cochran–Tukey 0.513181 – 0.814 0.8084 0.878

Cadwell–Leslie–Brown 1.054150 – 0.814 0.8084 0.878
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are given, as well as estimates calculated from the statistical simulation of the distributions of the statistics for N = 106. Only 

the estimates of p for N = 106 are listed when a Laplace distribution is assumed. These results show that if we ignore the fact 

that the standard assumption of normality is violated, then for all the tests (except the modifi ed Z-test) we obtain values of p 

that are less than the true values for a Laplace distribution. If the actual distribution had lighter tails than the normal distribu-

tion, then the values of p found under the assumption of normality would exceed the true values.

 The result for the modifi ed Overall–Woodward Z-test does not fi t into the above remarks (Table 4). This is because 

of the approximate character of the structure of the modifi cation [1]. These examples show that the parametric tests for the 

homogeneity of variances with the highest powers can be used correctly, both when the standard assumption of normality is 

satisfi ed and when it is violated. In both cases, the possibility of estimating the attained levels of signifi cance enhances the 

information content of the statistical conclusions.

 This sort of procedure for using the tests is possible with reliance on programs similar to that in Ref. 24. One of the 

preliminary conditions for switching to this procedure is identifi cation of the form of the distribution which provides the best 

description of the sample being analyzed [28]. A decision on the most preferable model for the distribution may lie beyond 

the scope of the problem of testing for homogeneity. Otherwise, a choice of the model for the distribution may be made in 

the course of an analysis of a set of test samples (or a unifi ed sample). If the best model is then a family of distributions (e.g., 

a generalized normal distribution, the family of gamma- and beta-distributions, etc.) for which the specifi c form of the distri-

bution is determined by a shape parameter (or parameters), then the distribution model that is used must be identifi ed with an 

accuracy in this parameter (an estimate must be found for it and set).

 These studies were supported by the Ministry of Education and Science of Russia as part of the government program 

on Support for Scientifi c Research and the project part of a State Assignment (project No. 1.1009.2017/PCh).
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