
The power of a number of goodness of fit tests when checking simple and complex hypotheses is analyzed

by statistical modeling methods.  Estimates are given of the power of the tests when checking hypotheses

of certain relatively close alternatives.  The results enable the tests to be arranged in order of power.

Key words: goodness of fit power, Kolmogorov, Cramer–von Mises–Smirnov, Anderson–Darling, Pearson,

and Rao–Robson–Nikulin, goodness of fit tests.

When using goodness of fit tests to check hypotheses that an empirical distribution, constructed from a sample taken

from a general set, corresponds to a theoretical law, simple and complex hypotheses can be distinguished.  The simple hypoth-

esis under examination has the form H0: F(x) = F(x, θ), where F(x, θ) is the probability distribution function from which one

can check the goodness of fit of the observed sample and θ is the known value of the parameter (scalar or vector).

The complex hypothesis under examination can be written in the form H0: F(x) ∈ {F(x, θ), θ ∈ Θ}, where Θ is the

region in which the unknown parameter θ is defined.  A difference arises in the use of tests when checking complex hypothe-
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ses and corresponding problems if the estimate of the parameter q of a theoretical distribution is calculated using the same

sample with which the goodness of fit is verified.  We will further assume that when checking complex hypotheses the esti-

mate of the parameter q is calculated using the same sample.

Two forms of error arise from the checked statistical hypotheses: errors of the 1st kind consists of the fact that, as a

result of checking, the true hypothesis H0 deviates, while an error of the 2nd kind consists of recognizing the true hypothe-

sis H0 when a certain competing hypothesis H1 is correct.

The procedure for checking the hypothesis H0 assumes that the distribution G(SH0) of the statistics S of the test

employed is known when H0 is correct.  For goodness of fit tests, the critical regions are characterized by large values of the

statistics.  The probability α of an error of the 1st kind (the level of significance) is the probability that the value of the statis-

tics will fall in the critical region α = P{S > SαH0} = 1 – G(SαH0), where Sα is the critical value.  As a rule, the value of

α is given when checking hypotheses.  If the value of the statistics calculated from the sample S* ≤ Sα, one does not deviate

from the hypothesis H0 under examination.  A knowledge of the distribution G(SH0) enables one, from the value of S*, to

obtain P{S > S*H0} = 1 – G(S*H0) – the level of significance reached.  One does not deviate from the hypothesis H0 under

examination when P{S > S*H0} > α.

If a competing hypothesis H1 is specified, we define the probability of an error of the 2nd kind by the relation β =

= P{S ≤ SαH1} = G(SαH1), where G(SH1) is the distribution of the test statistics when H1 holds.  If the test is completely

defined, the specification of α uniquely defines the value of β and conversely.  The power of a test 1 – β when checking the

hypothesis H0 against H1 is a function which depends on H0, H1, the volume of the sample n and, possibly, on certain other

factors, connected with the construction of the test.

When carrying out a statistical analysis of data, giving preference to a certain test, the experimentor wishes to have

assurance that, for a certain probability of an error α of the 1st kind, one is guaranteed a minimum probability of an error β of

the 2nd kind, i.e., one can choose the test which is the most powerful of the pair of alternatives H0 and H1 of interest to him.

The information in various sources regarding the advantages in certain situations of one goodness of fit test or anoth-

er is not unique, often contradictory, and subjective.  Investigations of the power are made difficult by the lack of results con-

nected with the analytical representation of the distribution functions G(SH1) for specific goodness of fit tests when check-

ing complex hypotheses, in particular, for nonparametric tests and for χ2-type teests when estimating parameters from point

samples (from ungrouped observations).

The purpose of these investigations is to carry out a comparative analysis of the power of the goodness of fit tests

most often used on certain pairs of fairly close competing hypotheses H0 and H1.

In the Kolmogorov test [1] statistics with a correction, proposed in [2], of the form

are most often used, where

n is the volume of the sample; and x1, x2, …, xn are sample values in increasing order.  For the simple hypothesis under exam-

ination to be correct, the statistics Sk in the limit must obey the Kolmogorov distribution law K(s) [1].

The Cramer–von Mises–Smirnov ω2 test statistics have the form [1]:

When the simple hypothesis holds, the statistics in the limit must obey a law with the distribution function a1(s) [1].
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The Anderson–Darling Ω test statistics is given by the expression [1]

and when the simple hypothesis holds in the limit it must obey a law with distribution function a2(s) [1].

When checking simple hypotheses, the limit distributions of the statistics of these nonparametric tests are indepen-

dent of the form of the distribution law observed.  They are therefore said to be distribution-free.

When checking complex hypotheses, when the parameters of the law are estimated from the same sample, non-

parametric tests lose the “distribution-free” property [3].  Moreover, the distributions of the test statistics become dependent

on the form of the complex hypothesis under examination [4].

The analytical form of the (limit) distributions of the statistics G(SH0) of nonparametric tests when checking com-

plex hypotheses is unknown.  There are particular solutions in which different approaches are employed.  Obviously, the most

promising one for constructing the distributions of the statistics is a numerical approach, based on statistical modeling of

empirical distributions of the statistics and the construction for them of approximate analytical models [4–8].

The use of the Pearson χ2 test requires the region in which the random quantity is defined to be split into k intervals

and the calculation of the number of observations ni which fall within them, and the probabilities of them falling in the inter-

val Pi(θ) corresponding to the theoretical law.  The statistics of the test have the form

(1)

When checking a simple valid hypothesis in the limit, the statistics obey a χ2
k–1-distribution with k = 1 degrees of

freedom.

When checking a complex hypothesis when H0 holds and under conditions that the estimates of the parameters are

found as a result of minimizing the statistics (1) using the same sample, the statistics Xn
2 is asymptotically distributed as

χ2
k–r–1, where r is the number of parameters estimated from the sample.  The statistics (1) have the same distribution if we

choose the maximum-likelihood method as the method of estimation and the estimates are calculated from classified data [9].

It has been shown by statistical modeling that this also occurs when using other asymptotically effective estimates based on

classified data [10].

When calculating maximum-likelihood estimates using unclassified data, the same statistics is subject to a law

which differs from the χ2
k–r–1-distribution.  In this case, when checking complex hypotheses and using the maximum likeli-

hood estimates based on unclassified observations of the distribution G(Xn
2H0), the statistics of the test depend considerably

on the method of classification [11].

When preparing methods of statistical modeling, investigations were carried out on the distribution laws of χ2-type

statistics in the case of simple and different complex hypotheses, when the hypothesis H0 holds together with a competing

hypothesis H1, for equiprobable and asymptotically optimum classification [12].  In the asymptotically optimum classification,

the losses in the Fisher information are minimized, connected with the classification, and the power of the Pearson χ2 test is

maximized with respect to the nearest competing hypotheses.

When checking complex hypotheses employing χ2-type tests, the use of estimates based on unclassified (point) obser-

vations has definite advantages, since these estimates have the best asymptotic properties compared with estimates based on clas-

sified data.  Tests based on the Rao–Robson–Nikulin statistics [13] belong to tests of this kind.  It is noteworthy that the statis-

tics of these tests when H0 holds in the limit obey a χ2
k–1-distribution irrespective of the number of parameters of the law, esti-

mated by the maximum-likelihood method, while the power of the test, as a rule, is greater than the power of the Pearson χ2 test.

In this case, the statistics proposed by Nikulin [14–16] were considered.  The test specifies the estimation of the

unknown parameters of the distribution F(x, θ) by the maximum-likelihood method using unclassified data.  In this case, the
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vector of the probabilities of falling in the intervals P = (P1, ..., Pk)
T is assumed to be given, and the boundary points of the

intervals are found from the relations

The proposed statistics have the form [14]:

where Xn
2 are calculated from (1); the matrix

the elements and dimensions of which are determined by the estimated components of the vector of the parameters θ;

are the elements of the information matrix based on unclassified data, the components of the vector a(θ) have the form

and

When estimating the values of the power of the tests in order to construct empirical distributions Gn
N(SH0) and

Gn
N(SH1) of the corresponding statistics S, it is most convenient to use statistical modeling methods.  To do this, one mod-

els samples of the statistics S1, S2, ..., SN of a fairly large volume N for specific volumes of samples n of the observed quan-

tities, modeled using laws corresponding to the hypothesis under examination H0 and the competing hypothesis H1.  Further,

as a rule, N = 106 while the index N in the notation of the corresponding empirical functions is omitted.

We will illustrate the results of a comparative analysis of the power of the goodness of fit tests by two pairs of alter-

natives.

The normal and logistical laws comprise the first pair: the hypothesis H0 under examination corresponded to a nor-

mal law with density

while the competing hypothesis H1 corresponded to a logistical law with density function

and the parameters θ0 = 1 and θ1 = 0.  In the case of the simple hypothesis H0, the parameters of the normal law have the

same values.  Since these two laws are very close, it is difficult to distinguish them using goodness of fit tests.
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The second pair was as follows: H0 is a Weibull distribution with density

and parameters θ0 = 2, θ1 = 2, and θ2 = 0; H1 is a gamma distribution with density

and parameters θ0 = 3.12154, θ1 = 0.557706, and θ2 = 0, for which the gamma distribution is closest to this Weibull distribution.

We investigated the power when checking simple and complex hypotheses H0 against the simple alternative H1.

We used the maximum-likelihood method when checking complex hypotheses in the case of all the goodness of fit

tests investigated in order to estimate the unknown parameters.  Here all the tests were under equal conditions.  Moreover,
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TABLE 1. Power of the Goodness of Fit Tests When Checking a Simple Hypothesis H0 (a normal

distribution) Against an Alternative H1 (logistical)

Significance Value of the power for n

level α 100 200 300 500 1000 2000

Pearson χ2 test for k = 15 and asymptotically optimal classification

0.15 0.349 0.459 0.565 0.737 0.946 0.999

0.1 0.290 0.388 0.490 0.671 0.922 0.998

0.05 0.210 0.292 0.385 0.565 0.871 0.996

0.025 0.154 0.222 0.302 0.472 0.813 0.992

0.01 0.107 0.159 0.221 0.369 0.729 0.983

Anderson–Darling Ω2 test

0.15 0.194 0.258 0.328 0.472 0.776 0.982

0.1 0.125 0.169 0.222 0.343 0.654 0.957

0.05 0.057 0.079 0.107 0.181 0.439 0.869

0.025 0.026 0.036 0.049 0.088 0.261 0.724

0.01 0.010 0.013 0.017 0.031 0.114 0.491

Kolmogorov test

0.15 0.190 0.246 0.303 0.415 0.662 0.922

0.1 0.127 0.170 0.215 0.309 0.544 0.861

0.05 0.062 0.088 0.116 0.179 0.365 0.721

0.025 0.031 0.044 0.061 0.100 0.231 0.560

0.01 0.012 0.018 0.026 0.044 0.119 0.366

Cramer–von Mises–Smirnov ω2 test

0.15 0.178 0.228 0.283 0.401 0.680 0.947

0.1 0.114 0.147 0.186 0.277 0.542 0.892

0.05 0.052 0.067 0.086 0.136 0.324 0.742

0.025 0.024 0.030 0.039 0.062 0.171 0.548

0.01 0.010 0.011 0.014 0.021 0.065 0.307
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TABLE 2. Power of the Goodness of Fit Tests When Checking a Complex Hypothesis H0 (a normal distribution) Against an

Alternative H1 (logistical)

Significance Value of the power for n

level α 20 50 100 200 300 500 1000 2000

Anderson–Darling Ω2 test

0.15 0.222 0.297 0.400 0.575 0.708 0.873 0.989 1.000

0.1 0.164 0.230 0.324 0.496 0.636 0.828 0.981 1.000

0.05 0.098 0.149 0.224 0.377 0.519 0.741 0.963 1.000

0.025 0.060 0.096 0.152 0.282 0.414 0.649 0.935 0.999

0.01 0.031 0.054 0.091 0.186 0.297 0.525 0.885 0.998

Nikulin Yn
2 test for k = 15 and asymptotically optimum classification

0.15 0.245 0.320 0.395 0.536 0.646 0.806 0.967 1.000

0.1 0.195 0.249 0.332 0.466 0.579 0.755 0.952 0.999

0.05 0.137 0.165 0.248 0.368 0.480 0.669 0.921 0.998

0.025 0.077 0.112 0.184 0.291 0.395 0.587 0.883 0.996

0.01 0.036 0.071 0.125 0.213 0.304 0.488 0.825 0.992

Cramer–von Mises–Smirnov ω2 test

0.15 0.210 0.273 0.366 0.529 0.659 0.836 0.980 1.000

0.1 0.153 0.208 0.291 0.447 0.582 0.781 0.968 1.000

0.05 0.090 0.130 0.194 0.329 0.458 0.678 0.939 0.999

0.025 0.053 0.082 0.128 0.237 0.353 0.573 0.897 0.998

0.01 0.027 0.044 0.074 0.150 0.243 0.445 0.825 0.994

Pearson χ2 test for k = 15 and asymptotically optimal classification

0.15 0.243 0.295 0.342 0.467 0.579 0.751 0.950 0.999

0.1 0.194 0.220 0.280 0.393 0.502 0.688 0.928 0.998

0.05 0.140 0.133 0.199 0.291 0.391 0.583 0.882 0.996

0.025 0.081 0.080 0.137 0.214 0.303 0.486 0.827 0.992

0.01 0.036 0.043 0.079 0.139 0.213 0.376 0.745 0.984

Kolmogorov test

0.15 0.200 0.246 0.313 0.440 0.554 0.732 0.941 0.999

0.1 0.142 0.181 0.236 0.351 0.459 0.646 0.905 0.997

0.05 0.080 0.105 0.143 0.230 0.322 0.502 0.823 0.990

0.025 0.045 0.061 0.086 0.149 0.219 0.376 0.721 0.975

0.01 0.021 0.029 0.043 0.081 0.127 0.244 0.575 0.938

TABLE 3. Power of the Test for Checking the Deviation of a Distribution from a Normal Law

Against an Alternative H1 (a logistical law)

Significance 
Value of the power of the test for n = 20 and 50

level Shapiro–Wilk Epps–Pally D’Agostino with z2

α
20 50 20 50 20 50

0.1 0.181 0.202 0.178 0.249 0.189 0.327

0.05 0.117 0.141 0.111 0.165 0.111 0.223

0.01 0.044 0.067 0.037 0.062 0.032 0.089



the Kolmogorov, Cramer–von Mises–Smirnov ω2, and Anderson–Darling Ω2 type nonparametric tests are the most powerful

compared with the case when the estimates are found by minimizing the corresponding statistics [6].

In Table 1, we show estimates of the power of the goodness of fit tests considered, calculated from the results of

modeling distributions of the statistics, in the case of a pair of normal–logistical alternatives for different values of the sig-

nificance level α when checking a simple hypothesis H0, corresponding to a normal law with parameters (0, 1), against an

alternative H1, corresponding to a logistical law with the same set of parameters.  The error of the estimates of the power

when checking the simple hypotheses and a 95% confidence interval does not exceed ±10–3.  The tests are arranged in order

of decreasing power.

In Table 1, we show the maximum power of the Pearson χ2 test, which it has for a given pair of alternatives for k = 15

and asymptotically optimum classification.  For equiprobable classification, the Pearson χ2 test against a given pair of alter-

natives has maximum power for k = 4 [17].  Further, the power falls off as k increases.  But this maximum level of power is

less than the power of the given test when k = 9 and using the asymptotically optimum classification.

Estimates of the power when checking a complex hypothesis H0, corresponding to the observed sample having a

normal law against the same simple competing hypothesis H1, are shown in Table 2.  Here also the criteria are arranged in

order of decreasing power.  It should be noted that in certain cases the preference is not obvious since, although possessing
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TABLE 4. Power of the Goodness of Fit Tests for Checking a Simple Hypothesis H0 (a Weibull

distribution) Against an Alternative H1 (a gamma distribution)

Significance Value of the power for n

level α 100 200 300 500 1000 2000

Pearson χ2 test for k = 15 and the asymptotically optimum classification

0.15 0.486 0.621 0.757 0.909 0.996 1.000

0.1 0.418 0.556 0.701 0.876 0.993 1.000

0.05 0.324 0.469 0.611 0.815 0.986 1.000

0.025 0.254 0.403 0.529 0.751 0.974 1.000

0.01 0.191 0.332 0.437 0.668 0.954 1.000

Anderson–Darling Ω2 test

0.15 0.302 0.446 0.577 0.781 0.976 1.000

0.1 0.223 0.348 0.473 0.689 0.951 1.000

0.05 0.131 0.224 0.326 0.533 0.882 0.998

0.025 0.076 0.141 0.220 0.396 0.785 0.993

0.01 0.037 0.075 0.126 0.257 0.636 0.975

Cramer–von Mises–Smirnov ω2 test

0.15 0.295 0.425 0.539 0.716 0.931 0.998

0.1 0.224 0.343 0.453 0.637 0.894 0.995

0.05 0.138 0.233 0.329 0.508 0.816 0.987

0.025 0.084 0.155 0.233 0.393 0.725 0.970

0.01 0.043 0.088 0.142 0.270 0.597 0.934

Kolmogorov test

0.15 0.294 0.421 0.531 0.700 0.915 0.995

0.1 0.225 0.342 0.450 0.628 0.879 0.992

0.05 0.141 0.237 0.332 0.508 0.806 0.981

0.025 0.087 0.160 0.239 0.401 0.723 0.964

0.01 0.045 0.093 0.150 0.282 0.606 0.930



a higher power for some levels of significance and some sample volumes, the test may lose out for other values of α and n.

In Table 2, the maximum power of the Nikulin and Pearson χ2 tests is shown.

When estimating the power when checking complex hypotheses, we based ourselves on modeled distributions of the

statistics G(SH0) for a sample volume n = 1000.  With such large values of n, the empirical distribution of the statistics can

be assumed to be a good estimate of the limit law.

When checking complex hypotheses and sample volumes n = 20 and 50 for all the tests investigated, the distribu-

tions G(S20H0) and G(S50H0) differ considerably from the “limit” distribution G(SnH0) for n = 1000.  Hence the power

was estimated from modeled pairs of distributions of the form G(S20H0), G(S20H1) and G(S50H0), G(S50H1).
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TABLE 5. Power of the Goodness of Fit Tests When Checking a Complex Hypothesis H0 (a Weibull

distribution) Against an Alternative H1 (a gamma distribution)

Significance Value of the power for n

level α 100 200 300 500 1000 2000

Anderson–Darling Ω2 test

0.15 0.435 0.667 0.817 0.952 0.999 1.000

0.1 0.353 0.589 0.757 0.928 0.998 1.000

0.05 0.244 0.466 0.650 0.876 0.995 1.000

0.025 0.167 0.361 0.547 0.811 0.990 1.000

0.01 0.100 0.252 0.424 0.715 0.977 1.000

Cramer–von Mises–Smirnov ω2 test

0.15 0.396 0.603 0.750 0.913 0.996 1.000

0.1 0.316 0.520 0.679 0.875 0.993 1.000

0.05 0.212 0.394 0.560 0.797 0.984 1.000

0.025 0.143 0.295 0.452 0.712 0.968 1.000

0.01 0.082 0.196 0.330 0.593 0.936 1.000

Nikulin Yn
2 test for k = 9 and asymptotically optimum classification

0.15 0.324 0.511 0.665 0.869 0.993 1.000

0.1 0.246 0.423 0.584 0.818 0.987 1.000

0.05 0.153 0.299 0.454 0.720 0.973 1.000

0.025 0.096 0.209 0.347 0.619 0.951 1.000

0.01 0.051 0.129 0.238 0.492 0.909 0.999

Pearson χ2 test for k = 9 and asymptotically optimum classification

0.15 0.347 0.525 0.678 0.868 0.992 1.000

0.1 0.273 0.439 0.596 0.818 0.986 1.000

0.05 0.172 0.311 0.463 0.719 0.970 1.000

0.025 0.104 0.218 0.352 0.617 0.946 1.000

0.01 0.053 0.133 0.237 0.483 0.898 0.999

Kolmogorov test

0.15 0.340 0.510 0.646 0.830 0.981 1.000

0.1 0.262 0.420 0.558 0.762 0.965 1.000

0.05 0.164 0.293 0.420 0.640 0.925 0.999

0.025 0.101 0.200 0.306 0.519 0.867 0.997

0.01 0.052 0.115 0.193 0.375 0.763 0.988



The power of the goodness of fit tests for small sample volumes n can be compared with the power of tests con-

structed specially to check the deviation of a distribution from a normal law: using the Shapiro–Wilk, Epps–Pally, and

D’Agostino tests with statistics z2.  Estimates of the power of these tests of normality, obtained in [18] and improved in the

present paper for volumes of the modeled samples of the statistics N = 106, are shown in Table 3, from which it follows that

the “special” tests against the pair of alternatives considered turn out to be of somewhat greater power on average.

The calculated estimates of the power of the tests for different values of the level of significance α when checking

the goodness of fit with the Weibull distribution (hypothesis H0) against an alternative, corresponding to the gamma-distri-

bution with these parameters (hypothesis H1) for the simple hypothesis H0 are shown in Table 4, and a complex hypothesis

H0 in Table 5.  The tests in these tables are listed in order of decreasing power.

Hence, for the case when checking simple hypotheses, the tests can be listed in order of power as follows:

Pearson (asymptotically optimum classification) χ2 P Anderson–Darling Ω2 P von Mises ω2 P= Kolmogorov.

This scale holds when using the Pearson (asymptotically optimal classification) χ2 in the test, for which the losses

in Fisher information are minimized.  For very close hypotheses, we may have

Kolmogorov P von Mises ω2.

When checking complex hypotheses, the power gradation turns out to be quite different:

Anderson–Darling Ω2 P von Mises ω2 P Yn
2 (asymptotically optimum classification) P

P Pearson (asymptotically optimum classification) Xn
2 P Kolmogorov.

For very close hypotheses, we may have

Anderson–Darling Ω2 P Yn
2 (asymptotically optimum classification) P von Mises ω2 P

P Pearson (asymptotically optimum classification) χ2 P Kolmogorov.

These conclusions have an integrated form.  The ordering is not rigid.  As can be seen from the tables with listed

values of the power, sometimes a test has advantages in power for some values of α and sample volumes n but is inferior for

other values of α and n.

It should be borne in mind that the power of the Pearson and Nikulin χ2 type tests depends not only on the hypothe-

ses H0 and H1 and the sample volume n, but, for specified H0 and H1, on the method of classification and the number of inter-

vals.  The number of intervals for which the power of the tests for a pair of alternatives H0 and H1 is a maximum depends on

these hypotheses and on the method of classification.  An increase in the number of intervals does not always lead to an

increase in the power of χ2 type tests [17].

For close hypotheses H0 and H1, the choice of asymptotically optimum classifications when using the Pearson χ2

test gives a positive effect for simple and complex hypotheses.  However, this does not mean that the use of asymptotically

optimum classifications always guarantees maximum power of the test.  For specific and not very close hypotheses, certain

other methods of classification may turn out to be optimum, which can be obtained as a result of maximizing the test power.

For one and the same pair of hypotheses H0 and H1 for one number of intervals k, the Nikulin test may turn out to

have a greater power with the asymptotically optimum classification, while for a different k it may be more powerful for an

equiprobable classification.  The dependence of the power of a given test on the method of classification turns out to be more

complex and requires further investigation.
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