
Percentage-point tables have been compiled for statistics for tests of Grubbs type in testing for whether

simultaneously three maximal or three minimal values represent excursions, and simultaneously the minimal

and maximal values in the sample. Monte Carlo simulation has been applied to the distributions of the Grubbs

test statistics as used in rejecting anomalous measurements for deviations of the observed law from normal.
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Importance attaches to statistical tests for distinguishing anomalous measurements (outlying values). If one does not

exclude such excursions from the data, then the classical methods of statistical analysis, which are usually not robust, often

lead to incorrect conclusions.

Measurements that contain gross errors are usually quite obvious and can be discarded without using statistical

methods. Statistical methods of detecting gross errors are desirable only in doubtful cases, when the information on the mea-

surement quality is incomplete or unreliable [1], where one should check the obedience to assumptions under whose condi-

tions it is correct to use them.

Most existing tests for rejecting doubtful data are based on the assumption that the observed random quantities fol-

low a normal law. Examples are simple Grubbs tests [2–4] used for testing for anomaly (for estimating the anomaly) of out-

lying measurements. A standard [5] proposes the use of these tests, as this is the authentic test of the corresponding interna-

tional standard ISO 5725. The statistics for the Grubbs test envisage checking for a sample containing either one outlying

result (the least or largest) or two (two least or two largest).

Interest attaches to Grubbs tests because of the preference given to them in implementing standard ISO 5725. Here

we show how distributions for the Grubbs test statistics alter in response to deviations of the observed law from normal. This

illustrates what will occur with the use of the tests when the assumptions of normality are violated. Another purpose consists

in using the tests with analogous statistics to check two hypotheses: for anomaly simultaneously in one minimal and one max-

imal element in the sample and for anomaly either in three minimal or three maximal elements in the sample.

The data have been obtained by Monte Carlo simulation based on suitable software.

Grubbs Test for One Outlying Value. Let X1, X2, ..., Xn be the observed sample, while X(1) ≤ X(2) ≤ ... ≤ X(n) is the

variational series constructed from it. The hypothesis H0 being tested is that all the X1, X2, ..., Xn belong to a common pop-

ulation. When one tests for excursion in the largest sample value, the competing hypothesis H1 is that X(1), X(2), ..., X(n–1) fol-

low one law and X(n) follows another one, substantially shifted to the right. In checking X(n) for an excursion, the Grubbs test

takes the form

Gn = (X(n) – X) /S, (1)
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where

(2)

In testing for an excursion in the least sample value, the competing hypothesis H1 involves the assumption that X(1)
belongs to some different law substantially displaced to the left. Then the statistic becomes

G1 = (X – X(1)) /S. (3)

The maximal or minimal element in the set is taken as an outlier if the value of the corresponding statistic exceeds

the critical value: Gn ≥ Gn,1–α or G1 ≥ G1,1–α, where α is the set significance level.

The (1) and (3) statistics are identically distributed. Figure 1 shows the forms of the conditional distributions

F(Gi /H0) for the (1) and (3) statistics in relation to sample volume for normal distributions. The distribution for the statistic

is substantially dependent on the sample volume n. The analytical forms of the statistic distributions are not given in the [5]

standard or in [2–4]. They give only the upper percentage points for various sample volumes, since the decision on the anoma-

ly in a minimal or maximal sample value is taken from the right-hand tail in the statistic distribution. In the standard, the per-

centage points are given only for sample volumes n from 3 to 40, while in [4] they are given for the range up to 147.

Table 5 for the percentage points in [5] gives the significance levels α incorrectly. In fact, this table gives values cor-

responding to significance levels of 0.005 (0.5%) and 0.025 (2.5%), not 0.01 (1%) and 0.05 (5%). This is shown clearly by [4].

This discrepancy was noted in research on the distributions of the Grubbs statistics. It still applies for the percentage points

of statistics for analysis for outlying values simultaneously of two minimal or two maximal sample values. Consequently on

this misunderstanding, when one specifies the significance level of 0.01 or 0.05 and uses the percentage points given in Table 5

of the standard [5], some of the outlying values will not be rejected.

That test can be used to distinguish anomalous results only for a normal distribution; if the observed random quan-

tities belong to a different distribution, then the limiting distribution for the (1) and (3) statistics will be different. Figure 2
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Fig. 1. Distributions of the (1) and (3) statistics for the Grubbs test with

various sample volumes n (for a normal law).



shows the changes in the distributions of the (1) and (3) statistics when the random quantity belongs to various distributions

in the exponential family with density

(4)

Particular cases of the family are a normal distribution with shape parameter θ2 = 2 and a Laplace distribution with

θ2 = 1, while the limiting cases are a Cauchy distribution (θ2 → 0) and a uniform one (θ2 → ∞). Figure 2 gives the distributions

for (1) and (3) with the observed laws of (4) for values of the shape parameter θ2 = 0.5, 1, 2, 3, 5, and 10 and also in the case of

a Cauchy distribution with sample volume n = 40. It is clear that the distributions of the statistics differ very considerably.
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Fig. 2. Changes in the distributions of the (1) and (3) statistics for the Grubbs test

in the case of differing laws from the family of (4) distributions with n = 40.

Fig. 3. Dependence of the distributions of statistics (5) and (9) for the Grubbs test

on the sample volume (for a normal distribution).



The distribution of the statistic of the (1) form was first examined in [6]; in [1], a series of statistics of the forms

of (1) and (3) is given, which differ one from another in combinations of known and estimated parameters for the shift and

scale of the normal distribution. The use of tests based on these various statistics has been considered in [7, 8]. All these statis-

tics, in spite of their similarities, differ from the Grubbs statistics of (1) and (3), in which estimators are used for both param-

eters of the normal distribution. Consequently, none of those statistics coincides precisely with the distribution of the Grubbs

statistics of (1) and (3). In [9], there is a survey of some other tests for detecting and eliminating outlying sample values.

Checking for Two Outliers. In that case, the competing hypothesis H1 may be related to the assumption that for

example a different distribution applies for X(n–1) and X(n) (or X(1) and X(2)). The Grubbs test in application for two largest

values being simultaneously outliers takes the form

G = S2
n–1,n /S0

2, (5)

where

(6)

(7)

(8)

To check simultaneously the two least values X(1) and X(2) for being outliers, the statistic takes the form

G = S2
1,2 /S0

2, (9)

where

(10)

(11)

The two values (X(n–1), X(n) or X(1), X(2)) are considered outliers if the value of the corresponding statistic is less

than the critical value G < Gα.

Figure 3 shows the forms of the conditional distributions F(GH0) for the statistic G of (5) and (9) in relation to

sample volume; the analytic forms for the distributions of G are not given in [5] or in [2–4]. They give only the lower per-

centage points for various sample volumes, since a decision on anomaly simultaneously for the two least or two largest sam-

ple values is taken on the left-hand tail of the statistic distribution. In the standard, the lower percentage points are given for

sample volumes n only from 4 to 40. In [4] the lower percentage points for the distribution of statistic G are given for the

range in n up to 149.

If the observed random quantities have a distribution different from normal, then the distributions for the (5) and (9)

statistics take another form. With observed distributions of (4) form and values of shape parameter θ2 = 0.5, 1, 2, 3, 4, 5,
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and 10 and in the case of a Cauchy distribution, with sample volumes n = 20, these distributions take the form shown in Fig. 4.

This implies that the distributions for the (5) and (9) Grubbs statistics are very much dependent on the distribution of the

observed quantity.

As in the first case, a test with the (5)–(9) statistics can be used to discard anomalous observations by using the tables

of percentage points given in [4, 5] only for a normal distribution. If the observed distribution differs from normal, Figs. 2

and 4 imply that the use of those tables can lead to one not only overlooking outliers, but also to the assignment as anoma-

lous of data that are not such.

Checking for Three Outliers. The approach of (5)–(11) can be developed naturally to construct statistics for check-

ing for anomaly simultaneously in three minimal or three maximal sample values, or else for checking for excursion simul-

taneously in the minimal and maximal values in the sample. One needs only to examine the distributions of the correspond-

ing statistics.
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Fig. 4. Changes in the distributions of the (5) and (9) Grubbs statistics for

various distributions with n = 20.

Fig. 5. Dependence of the distributions for the (12) and (13) statistics on

sample volume (for a normal distribution).



When one checks for anomaly simultaneously in the three minimal or three maximal sample values, the competing

hypothesis H1 proposes that X(1), X(2), and X(2) (or X(n–2), X(n–1), and X(n)) have some different distribution. The statistics for

checking for anomaly simultaneously in the three minimal or three maximal sample values are formulated in accordance with

G1,2,3 = S2
1,2,3 /S0

2; (12)

Gn–2,n–1,n = S2
n–2,n–1,n /S0

2, (13)

where

(14)

(15)

The (12) and (13) statistics are identically distributed. All three measurements are considered as outliers if the value

of the corresponding statistic is less than the critical one: G1,2,3 < G3,α or Gn–2,n–1,n < G3,α.

Naturally, the distributions of these statistics are also dependent on n. Figure 5 shows the independence of the con-

ditional distributions F(G1,2,3H0) and F(Gn–2,n–1,nH0) for the (12) and (13) statistics when the sample is taken from a nor-

mal population. Table 1 gives the lower percentage points (α = 0.1; 0.5; 1; 5; 10%) for the distributions of the (12) and (13)

statistics for 5 ≤ n ≤ 50 as calculated by Monte Carlo simulation. Percentage points have been constructed from the simulat-

ed statistic samples. The volume of each sample from which the percentage points were estimated was 50000 simulated val-

ues. Table 1 gives values for the percentage points obtained by averaging over 15 such experiments.

The distributions for the (12) and (13) statistics are also dependent on the observed law. The distributions of them

for laws of the form of (4) with shape parameters θ2 = 0.5; 1; 2; 3; 5; 10 and in the case of a Cauchy distribution with sam-

ple volume n = 20 are given in Fig. 6.

Simultaneous Check for Excursions in the Least and Largest Values. The following formula gives the statistic

for checking for anomaly simultaneously in the minimal and maximal sample values:

G1,n = S2
1,n /S0

2, (16)

where

(17)

Two values are considered as outliers for the given level of significance α if the value of the (16) statistic calculat-

ed on the sample is less than the critical value: G1,n < G1,n,α.

Figure 7 shows the conditional distributions F(G1,nH0) for the (16) statistic G1,n in relation to sample volume n

when the sample is taken from a normal population. Table 2 gives the lower percentage points for the distributions of the (12)

statistic with 5 ≤ n ≤ 150 as calculated by Monte Carlo simulation.
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TABLE 1. Lower Percentage Points of the (12) and (13) Statistics for Tests of Grubbs Type

n
Lower percentage points for α in %

0.1 0.5 1 2.5 5 10

5 0.0000 0.0000 0.0000 0.0001 0.0004 0.0015

6 0.0002 0.0009 0.0019 0.0048 0.0099 0.0207

7 0.0023 0.0065 0.0106 0.0200 0.0332 0.0552

8 0.0079 0.0186 0.0268 0.0437 0.0640 0.0943

9 0.0176 0.0355 0.0478 0.0711 0.0966 0.1333

10 0.0314 0.0561 0.0717 0.1001 0.1302 0.1703

11 0.0471 0.0779 0.0968 0.1293 0.1619 0.2047

12 0.0659 0.1012 0.1222 0.1576 0.1925 0.2368

13 0.0841 0.1237 0.1471 0.1850 0.2206 0.2660

14 0.1035 0.1468 0.1707 0.2104 0.2475 0.2935

15 0.1234 0.1692 0.1943 0.2351 0.2726 0.3182

16 0.1412 0.1905 0.2170 0.2583 0.2962 0.3419

17 0.1607 0.2109 0.2374 0.2799 0.3178 0.3631

18 0.1797 0.2309 0.2583 0.3008 0.3382 0.3828

19 0.1973 0.2503 0.2782 0.3197 0.3575 0.4016

20 0.2161 0.2688 0.2966 0.3387 0.3757 0.4190

21 0.2313 0.2856 0.3139 0.3558 0.3924 0.4348

22 0.2488 0.3023 0.3303 0.3718 0.4082 0.4505

23 0.2643 0.3197 0.3466 0.3881 0.4238 0.4645

24 0.2795 0.3339 0.3606 0.4020 0.4375 0.4782

25 0.2952 0.3491 0.3762 0.4164 0.4510 0.4906

26 0.3091 0.3625 0.3890 0.4294 0.4638 0.5028

27 0.3209 0.3750 0.4022 0.4415 0.4756 0.5144

28 0.3357 0.3887 0.4151 0.4536 0.4874 0.5250

29 0.3475 0.4001 0.4270 0.4658 0.4984 0.5353

30 0.3608 0.4127 0.4382 0.4763 0.5087 0.5451

31 0.3710 0.4228 0.4486 0.4867 0.5186 0.5544

32 0.3797 0.4331 0.4596 0.4968 0.5282 0.5634

33 0.3935 0.4441 0.4692 0.5060 0.5370 0.5716

34 0.4040 0.4547 0.4793 0.5151 0.5456 0.5798

35 0.4131 0.4643 0.4885 0.5242 0.5541 0.5876

36 0.4239 0.4730 0.4974 0.5330 0.5623 0.5952

37 0.4317 0.4824 0.5064 0.5411 0.5697 0.6023

38 0.4414 0.4915 0.5149 0.5487 0.5772 0.6090

39 0.4511 0.4999 0.5228 0.5563 0.5843 0.6158

40 0.4610 0.5077 0.5296 0.5630 0.5910 0.6219

41 0.4667 0.5146 0.5381 0.5706 0.5978 0.6279

42 0.4751 0.5226 0.5452 0.5774 0.6041 0.6338

43 0.4839 0.5299 0.5517 0.5836 0.6102 0.6397

44 0.4910 0.5366 0.5585 0.5899 0.6159 0.6450

45 0.4997 0.5436 0.5651 0.5960 0.6217 0.6504

46 0.5057 0.5498 0.5713 0.6020 0.6274 0.6553

47 0.5131 0.5562 0.5775 0.6075 0.6327 0.6605

48 0.5191 0.5622 0.5833 0.6131 0.6380 0.6653

49 0.5247 0.5684 0.5891 0.6183 0.6430 0.6698

50 0.5316 0.5745 0.5947 0.6239 0.6477 0.6743



The distribution of the (16) statistic is substantially dependent on the observed distribution. Figure 8 shows how the

distribution for that statistic varies for observed distributions of (4) with values for the shape parameter θ2 = 0.5; 1; 2; 3; 5; 10

and in the case of a Cauchy distribution with sample volumes n = 20.

Each test enables one to reject outlying data present in the sample providing the number of outliers in it does not

exceed the number for which the test is designed. When the test used corresponds to the actual number of outliers, the latter

can usually be identified by the test. When the sample contains a number of gross errors larger than the statistic envisages,

the test cannot distinguish them. For example, if a check for an outlier of the largest value alone does not give a positive result,

that does not mean that that value is not an outlier. It is possible that in the sample there are more values that can be inter-

preted as anomalous. Their presence is reflected in the estimators for the variance of (2) and (6) and the estimators for the

spread characteristics of (7), (10), (14), (15), and (17), since all of them are not robust. Consequently, when Grubbs tests are

used one needs to successively test the sample for various numbers of gross errors.
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Fig. 6. Changes in the distributions of the (12) and (13) statistics for various

laws in the (4) family with n = 20.

Fig. 7. Dependence of the distribution of the (16) statistic on sample volume

(for a normal distribution).
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TABLE 2. Lower Percentage Points of the (16) Statistic for a Test of Grubbs Type

n
Lower percentage points for α in %

0.1 0.5 1 2.5 5 10

5 0.0003 0.0012 0.0025 0.0063 0.0129 0.0265

6 0.0030 0.0089 0.0140 0.0262 0.0427 0.0698

7 0.0110 0.0243 0.0349 0.0562 0.0809 0.1178

8 0.0242 0.0468 0.0620 0.0908 0.1218 0.1644

9 0.0408 0.0712 0.0908 0.1252 0.1608 0.2073

10 0.0610 0.0991 0.1215 0.1606 0.1981 0.2464

11 0.0845 0.1279 0.1529 0.1939 0.2334 0.2821

12 0.1072 0.1544 0.1813 0.2247 0.2648 0.3135

13 0.1307 0.1813 0.2091 0.2538 0.2948 0.3428

14 0.1527 0.2065 0.2356 0.2808 0.3219 0.3696

15 0.1747 0.2313 0.2605 0.3059 0.3463 0.3936

16 0.1964 0.2537 0.2837 0.3291 0.3697 0.4160

17 0.2162 0.2756 0.3052 0.3512 0.3907 0.4367

18 0.2357 0.2969 0.3268 0.3718 0.4110 0.4556

19 0.2571 0.3164 0.3465 0.3912 0.4298 0.4730

20 0.2762 0.3358 0.3650 0.4094 0.4474 0.4895

21 0.2950 0.3543 0.3829 0.4264 0.4636 0.5051

22 0.3114 0.3702 0.3994 0.4424 0.4787 0.5191

23 0.3268 0.3864 0.4154 0.4573 0.4932 0.5326

24 0.3448 0.4013 0.4297 0.4714 0.5064 0.5451

25 0.3590 0.4153 0.4440 0.4848 0.5187 0.5567

26 0.3732 0.4294 0.4576 0.4973 0.5310 0.5679

27 0.3865 0.4423 0.4699 0.5097 0.5422 0.5784

28 0.3994 0.4547 0.4818 0.5208 0.5529 0.5884

29 0.4133 0.4673 0.4930 0.5317 0.5631 0.5978

30 0.4257 0.4791 0.5050 0.5422 0.5731 0.6067

31 0.4376 0.4885 0.5145 0.5511 0.5819 0.6152

32 0.4477 0.4995 0.5249 0.5608 0.5908 0.6235

33 0.4558 0.5099 0.5346 0.5702 0.5993 0.6314

34 0.4688 0.5189 0.5431 0.5783 0.6072 0.6384

35 0.4779 0.5285 0.5524 0.5864 0.6149 0.6456

36 0.4874 0.5374 0.5612 0.5946 0.6225 0.6525

37 0.4970 0.5459 0.5688 0.6022 0.6296 0.6591

38 0.5048 0.5540 0.5767 0.6091 0.6359 0.6652

39 0.5145 0.5617 0.5839 0.6166 0.6425 0.6711

40 0.5211 0.5692 0.5917 0.6229 0.6489 0.6768

41 0.5307 0.5767 0.5985 0.6295 0.6548 0.6823

42 0.5385 0.5835 0.6052 0.6360 0.6606 0.6877

43 0.5450 0.5902 0.6117 0.6417 0.6662 0.6928

44 0.5522 0.5970 0.6181 0.6476 0.6715 0.6977

45 0.5599 0.6033 0.6237 0.6529 0.6767 0.7025

46 0.5675 0.6090 0.6295 0.6582 0.6817 0.7071

47 0.5742 0.6154 0.6356 0.6637 0.6865 0.7115

48 0.5789 0.6211 0.6412 0.6687 0.6913 0.7159

49 0.5861 0.6270 0.6461 0.6733 0.6957 0.7200

50 0.5910 0.6324 0.6512 0.6783 0.7002 0.7240



Outliers in measurements may be due to displaced values related to the systematic error, and also to increase in the

spread for various reasons. In the latter case, the outliers may relate to the least values or the largest ones. The capacity of

these tests to identify anomalous results will be dependent on the form of the corruption.

As an example, we consider the power of the tests on a model with symmetrical corruption, in which a sample from

a normal population with shift parameter µ and scale parameter σ is corrupted in 10% of the observations by a normal dis-

tribution with parameters µ and 5σ:

F(x) = 0.9FGauss(µ, σ; x) + 0.1FGauss(µ, 5σ; x).

The power of the test for a given probability α of errors of the first kind is determined by 1 – β, where β is the prob-

ability of errors of the second kind. In the present case, an error of the second kind is that an anomalous value is not identi-

fied as such. Table 3 gives the power of the criteria for checking for anomaly in a single minimal (or maximal) value in a

sample, or simultaneously two minimal values (two maximal ones), or simultaneously one minimal one and one maximal one

in a sample of volume n = 20. The higher power of the test with the (16) statistic in this case is due to the symmetry of the

corruption.

Parametric Observation Rejection. The tables for the percentage points of Grubbs tests derived in [2–4] and the

abbreviated table in [5] extend the tests considered here, and the tables constructed here for the corresponding percentage

points enable one to reject gross errors correctly (outliers) in the case of a normal distribution. If the assumption of normal-
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Fig. 8. Changes in the distribution of the (16) statistic for various laws from

the family of (4) distributions for n = 20.

TABLE 3. Power of 1 – β Tests of Grubbs Type in Respect

to a Mixture with 10% Symmetrical Corruption for n = 20

Significance Power of test with statistic

level (1) and (3) (5) and (9) (16)

0.10 0.3763 0.3586 0.6094

0.05 0.3285 0.3115 0.5448

0.01 0.2431 0.2351 0.4164



ity is violated, those percentage point tables cannot be used. We have seen above that the distributions of the statistics for tests

of Grubbs type are substantially dependent on the true distribution of the observed random quantity. If necessary, there are

no essential difficulties in constructing a model for the distribution of any particular statistic for a Grubbs-type test (or for

determining the percentage points) with any distribution for the observed random quantities. The problem only is that there

are too many distributions for which it would be desirable to have an effective procedure for rejecting anomalous measure-

ments.

It is logical in analyzing data for anomalies to operate with the true distribution for the observed quantity. Then the

rejection task is formulated as follows. The test hypothesis H0 is that all the values X1, X2, ..., Xn belong to the same popula-

tion with distribution F(x, θ). When the largest sample value X(n) is tested for an outlier, the competing hypothesis H1 is that

the values X(1), X(2), ..., X(n–1) belong to F(x, θ), while X(n) belongs to a certain distribution G(x), which is substantially dis-

placed to the right relative to F(x, θ) e.g., G(x) = F(x – A, θ), where A is quite large. If X(n) ≤ dn,α, then hypothesis H0 is

accepted, but otherwise H1. If the null hypothesis

is correct, the critical value is defined from 

When one checks for anomaly in the least value X(1), the hypothesis H0 is adopted if X(1) ≥ d1,α; then

and the critical value is defined by 

To identify correctly gross errors in a sample by means of this procedure, one must know the true distribution F(x, θ).

However, the vector for the parameters θ in F(x, θ) often has to be estimated from the same sample, and consequently the rejec-

tion procedure is sometimes called parametric. Outliers in the sample are reflected in the estimators for the parameters q. The

resulting law F(x, q) is substantially different from the true one, and consequently parametric methods of rejecting highly

deviant observations become unstable [10].

A similar shortcoming applies to tests of Grubbs type: there is no guarantee that the sample does not contain more

anomalous measurements than we examine for deviation. Then this may adversely affect the results.

In parametric rejection methods, one deals with this shortcoming by using robust estimation methods, e.g., maxi-

mum likelihood on grouped data [11], optimal L estimators on the sample quantiles [12, 13], and MD estimators. Robust esti-

mation methods in parametric rejection make it very effective [11].

Robust methods can be used for estimating the mathematical expectation and standard deviation also in calculating

statistics for Grubbs-type tests, but in that case it is essential to bear in mind that the estimation method is reflected in the dis-

tributions of the statistics.
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