
The probability distribution laws of different functions of random quantities, which obey different

one-dimensional distribution laws, are investigated using specially developed software employing statistical

modeling methods.  The effectiveness of the procedure for investigating probability laws is demonstrated.
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The problem of determining the probability characteristics of a quantity Y, which is not measurable directly, using

multiple measurements of accessible quantities X1, X2, ..., Xk, is quite often solved in metrology, if the function

Y = ϕ(X1, X2, ..., Xk)

is known or, in vector form Y = ϕ(X), and the joint probability distribution of the input variables X1, X2, ..., Xk is obtained

from the results of a statistical analysis.

The classical approach [1, 2] to determining the probability distribution law of a function of a system of random quan-

tities presupposes a knowledge of the joint probability density ƒ(x1, x2, ..., xk) of the system of random quantities X1, X2, ..., Xk.

However, an analytical solution using the classical approach can only be obtained for certain special cases of Y = ϕ(X) and

ƒ(x1, x2, ..., xk) [2].

As a consequence of this, to determine the probability characteristics of the output variable of the model Y = ϕ(X)

when the input variables X1, X2, ..., Xk are uncorrelated, linearization of the model

Y ≈ ϕ(M) + (X – M)T∇ϕ(M), (1)

where M is the vector of the mathematical expectations of X and ∇ϕ(⋅) is the gradient of the function, is recommended in [3].

This approach enables one to determine the corresponding characteristics of a random quantity Y from the distribu-

tion laws of the input variables X1, X2, ..., Xk or their numerical characteristics fairly simply.  Unfortunately, this approach

also turns out to be effective in relatively rare cases when the function ϕ(X) is close to linear.

In [4], using the example of the function Y = X1/X2, a difference in the solutions obtained using the classical

approach and the linearization method is demonstrated and the unacceptably large errors, to which the use of the latter method

leads, are emphasized.

Nevertheless, the linearization method is widely used in practice, including in data-measuring systems, which make

use of indirect measurements.  For example, this approach is used in [5] to investigate the metrological characteristics of mul-
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tichannel data-measuring systems with multiplicative interaction of the channels, which, as a result of linearization, is replaced

by additive interaction.  We would expect that the use of this method in the present situation [5] should lead to understated esti-

mates of the measurement error.

Hence, an analytical solution using the classical approach cannot be obtained in the majority of practical situations,

while linearization leads to inadequate solutions.  The purpose of the present paper is to draw the attention of metrologists to

the effectiveness of the Monte Carlo method for investigating probability laws, and its capabilities when constructing proba-

bility models of functions of random quantities, and to refine the probability characteristics of the errors of indirect mea-

surements.  Unfortunately, the Monte Carlo method is undeservedly rarely used to investigate probability laws in Russian

publications.

To investigate the distribution laws of functions of random quantities, we have developed software which enables a

sample of such functions to be modeled.  An interface enables arbitrary functions of a system of independent (as yet) random

quantities, having different one-dimensional distribution laws to be specified.

We will consider several examples which demonstrate the accuracy of statistical modeling and its effectiveness when

investigating the behavior of the distribution laws of functions of random quantities.

Obviously, the distribution of the function Y depends considerably on the form of the laws which the random quan-

tities Xi obey, and on the region in which they are defined.  Moreover, the function Y of Xi, having some form of distribution

law, can be described by very different models of probability laws depending on the parameters of the laws describing the

random quantities Xi.  We will show this using the function Y = X1/X2 when Xi obey normal laws.

Example 1. Y = X1/X2, where X1, X2 ∈ N(0, 1) and are independent.  The theoretical distribution law of Y is the

standard Cauchy distribution with density ƒ(y) = [π(1 + y2)]–1, y ∈ (–∞, +∞).  In Table 1, we show the results of a check of

the agreement between the modeled sample of the quantity Y and the Cauchy distribution.  In this and in the other cases, the

volumes of modeled samples amounted to 10000 values.  In the case of the Pearson χ2 criterion, asymptotically optimum

grouping is used which ensures the maximum power of relatively close competing hypotheses [6].  In Table 1, we show val-

ues of the statistics of the goodness of fit tests employed, calculated from the sample and the level of significance achieved

for each criterion [6, 7].  The achieved level of significance is the probability P{S > S*}, where S* is the value of the statis-
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TABLE 1. Results of a Check of the Goodness of Fit of a Sample of the Quantity

Y = X1/X2 with the Standard Cauchy Distribution in the Case X1, X2 ∈ N(0,1)

Criterion Value of the statistics Level of significance achieved

Pearson χ2 for k = 15 12.5470 0.5625

Kolmogorov 0.6087 0.8526

Mises ω2 0.0521 0.8636

Anderson–Darling Ω2 0.3416 0.9040

TABLE 2. Results of a Check of the Goodness of Fit of a Sample of the Quantity

Y = X1/X2 with a Cauchy Distribution in the Case X1 ∈ N(0, 4), X2 ∈ N(0, 0.3)

Criterion Value of the statistics Level of significance achieved

Pearson χ2 for k = 15 10.7130 0.7084

Kolmogorov 0.7169 0.6829

Mises ω2 0.0530 0.8577

Anderson–Darling Ω2 0.3202 0.9222



tics S of the corresponding criterion calculated from the sample.  The hypothesis of the goodness of fit of the empirical dis-

tribution with the theoretical one using the corresponding criterion is turned down if P{S > S*} < α, where α is a specified

error probability of the first kind.  In this case, the level of significance achieved using all the criteria indicates very good

agreement between the empirical distribution obtained by modeling and the Cauchy distribution.

Example 2.  Y = X1/X2, where X1 ∈ N(0, 4), X2 ∈ N(0, 0.3) and are independent.  The theoretical distribution law

of Y is the Cauchy distribution with density ƒ(y) = 1.2/π(16 + 0.09y2), y ∈ (–∞, +∞).  The results of a goodness of fit check

of the modeled sample with a Cauchy distribution are presented in Table 2.

Example 3.  Y = X1/X2, where X1 ∈ N(a, 1) and X2 ∈ N(b, 1) are independent.  When a = b = 1, the distribution law

of Y is not a Cauchy distribution.  An estimate of the parameters of the Cauchy density ƒ(y) = θ1/π(θ1
2 + (y – θ2)2) using the

modeled sample gives maximum-likelihood estimates of the scale parameters θ1 = 0.7895 and the shift θ2 = 0.6150.  The esti-

mate of the shift parameter is identical with the median empirical distribution.  A check of the goodness of fit of the empirical

distribution obtained by modeling with the Cauchy distribution law deviates with respect to all the criteria.  This is a conse-

quence of the fact that the actual distribution of the quantity Y in this case has become explicitly asymmetric.

In the general case, the distribution density of a particular Y when X1 ∈ N(a, 1) and X2 ∈ N(b, 1) can be distributed

in the form [8, 9]:

(2)

where and Φ(z) is the distribution function of the standard normal law.

The results of a check of the goodness of fit of the modeled sample with distribution (2) for a = b = 1 are shown in

Table 3.

Example 4.  Y = X1/X2, where X1 ∈ N(1, 1) and X2 ∈ N(10, 1) and are independent.  For a considerable excess of

the absolute value of the shift parameter X2 above the shift X1, a good model for Y is a normal distribution.  In Fig. 1, we show
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TABLE 4. Results of a Check of the Goodness of Fit of a Sample of the Quantity

Y = X1/X2 with a Normal Distribution in the Case X1 ∈ N(1, 1), X2 ∈ N(10, 1)

Criterion Value of the statistics Level of significance achieved

Pearson χ2 for k = 15 23.2720 0.0255

Kolmogorov 0.6501 0.3991

Mises ω2 0.0870 0.1564

Anderson–Darling Ω2 0.6545 0.0827

TABLE 3. Results of a Check of the Goodness of Fit of a Sample of the Quantity

Y = X1/X2 with the Distribution Obtained from Formula (2), in the Case When

X1 ∈ N(1, 1) and X2 ∈ N(1, 1)

Criterion Value of the statistics Level of significance achieved

Pearson χ2 for k = 15 17.4060 0.2351

Kolmogorov 0.8085 0.5302

Mises ω2 0.1462 0.4012

Anderson–Darling Ω2 0.9025 0.4126



a histogram, constructed for the empirical distribution with 15 intervals and an asymptotically optimal grouping [6, 10], and

a normal distribution density with an estimate of the scale parameter θ1 = 0.10051 and of the shift parameter θ2 = 0.10067.

In Table 4, we show the results of a check of the goodness of fit of the modeled sample with a normal distribution.

In Example 4 considered, the density of Y = X1/X2 has the form (2) with a = 1 and b = 10.  The results of a check

of the goodness of fit of the modeled sample with distribution (2) are shown in Table 5.

This example for the function Y = X1/X2 is a case when the use of linearization turns out to be legitimate.

Linearization gives a normal distribution with a mathematical expectation of 0.1 and a variance of 0.0101, i.e., normal with

a scale parameter θ1 = 0.1 and a shift parameter θ2 = 0.100499, which approximates to the true position of the objects.
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TABLE 5. Results of a Check of the Goodness of Fit of a Sample of the Quantity

Y = X1/X2 with Distribution (2) in the Case When X1 ∈ N(1, 1), X2 ∈ N(10, 1)

Criterion Value of the statistics Level of significance achieved

Pearson χ2 for k = 15 17.0230 0.2549

Kolmogorov 0.9115 0.3770

Mises ω2 0.1462 0.4012

Anderson–Darling Ω2 1.0833 0.3163

TABLE 6. Results of a Check of the Goodness of Fit of a Sample of the Quantity

Y = X1/X2 with Distribution (2) in the Case of When X1 ∈ N(10, 1), X2 ∈ N(1, 1)

Criterion Value of the statistics Level of significance achieved

Pearson χ2 for k = 15 14.9270 0.3831

Kolmogorov 0.8050 0.5359

Mises ω2 0.1261 0.4710

Anderson–Darling Ω2 0.92532 0.3989

Fig. 1.  Density and histogram of the distribution of Y = X1/X2 for X1 ∈ N(1, 1), X2 ∈ N(10, 1).



As the absolute value of the shift parameter X2 increases with respect to the shift X1, the distribution of Y approach-

es a normal distribution (with equality of the variances).  As the variance of X2 increases, the distribution of Y begins to devi-

ate from a normal distribution.  Under these conditions, as the variance of X1 increases with respect to the variance of X2, the

distribution is well approximated by a normal distribution, and the use of linearization leads to a normal law with a more

appreciable shift with respect to the true distribution law.

When the standard deviation of Xi is much less than its mathematical expectation and the distributions of Xi are close

to normal, the distribution of Y = X1/X2 is well approximated by a normal law, and its linearization also gives good results.

Example 5.  Y = X1/X2, where X1 ∈ N(10, 1), X2 ∈ N(1, 1) and are independent.  The distribution density of Y in this

case has the form of (2) for a = 10 and b = 1.  The results of a check on the goodness of fit of the modeled sample with distri-
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TABLE 7. Confidence Intervals for a Product of k =2, 5 Normal Standard Random

Quantities

k 90% interval 95% interval

1 –1.645; 1.645 –1.960; 1.960

2 –1.627; 1.603 –2.185; 2.167

3 –1.314; 1.356 –1.980; 2.057

4 –1.053; 1.116 –1.836; 1.934

5 –0.868; 0.749 –1.463; 1.296

TABLE 8. Confidence Intervals for a Product of k =2, 5 Normal Random Quantities with Shift and Scale Parameters

Equal to Unity

k
90% interval 95% interval

actual linearized actual linearized

1 –0.645; 2.645 –0.645; 2.645 –0.960; 2.960 –0.960; 2.960

2 –1.191; 4.360 –1.326; 3.326 –1.828; 5.293 –1.772; 3.772

3 –1.870; 6.104 –1.849; 3.849 –2.850; 8.375 –2.395; 4.395

4 –2.419; 7.540 –2.290; 4.290 –4.158; 10.942 –2.920; 4.920

5 –3.157; 8.483 –2.678; 4.678 –5.620; 13.793 –3.383; 5.383

Fig. 2.  Empirical distribution of Y = X1/X2 for X1 ∈ N(10, 1), X2 ∈ N(1, 1).



bution (2) are shown in Table 6.  The form of the empirical distribution function, obtained by modeling, is represented in Fig. 2.

It is obvious that it can be well described by a certain mixture of distributions, the analytical form of which differs from law (2).

In [5], the use of linearization is specified for the distribution law of the product of random quantities.  We will deter-

mine the correctness of the use of linearization in this case.

Suppose where Xi are uncorrelated random quantities with mathematical expectation Mi and variance

Di.  According to (1),

the mathematical expectation and the variance

The distributions of the products were investigated for different distribution laws of Xi.

When Xi belongs to standard normal laws for k =2, 5, the use of linearization is impossible, since the variance turns

out to be zero.  The distributions of Y obtained by modeling are asymmetric laws with zero median.  These distributions can-

not be adequately described by any one parametric model of the law, but they can be sufficiently well approximated by mix-

tures of the form
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Fig. 3.  Empirical distributions of products of k =1, 5 normal quantities with shift and

scale parameters equal to unity.



In Table 7, we show, for this case, the actual confidence intervals for Y, which emphasize the asymmetric form of

the laws.

In Fig. 3, we show empirical distributions of similar products of random quantities, but which belong to a normal

law with shift and scale parameters equal to unity.  The distributions of Y for this case for k =2, 4 are described quite well

by mixtures of two parametric models, and for k = 5 by mixtures of three parametric models.  The differences between the

actual confidence intervals and those obtained as a result of linearization are shown in Table 8.

When the accuracy of measurements of Xi is increased (with a reduction in Di) the distribution 

approaches a normal law.  For example, when Mi = 1 and Di = 10–4 the distribution of Y agrees quite well with a normal law

N(0.99973, 0.02232), constructed from a modeled sample.  In this case, linearization gives identical results N(1, 0.02236).

The same is observed when Mi increases for constant Di.

In conclusion, we will illustrate to what extent good models can be constructed for arbitrary functions for systems

of random quantities.  For example, for the function Y = sinX1cosX2X3 – sinX4cosX5X6, where X1 ∈ N(0, 1), X2 ∈ rav(0, 1),

X3, X6 ∈ exp(0, 1), X4 ∈ N(0, 4), and X5 ∈ rav(0, 2), i.e., they belong to normal, uniform, and exponential laws with the indi-

cated shift and scale parameters, a very good model turns out to be a distribution with density

(3)

and estimates of the parameters θ1 = 0.0014, θ2 = 0.4461, and θ3 = 0.7922.  The degree of closeness of the empirical distri-

bution obtained to the theoretical one (3) is indicated by the high levels of significance reached with respect to the goodness

of fit criteria employed (when checking complex hypotheses [6, 7]), represented in Table 9.

Hence, methods of statistical modeling, in conjunction with appropriate software, which enable approximate math-

ematical models to be constructed for empirical distributions (including in the form of mixtures of different parametric laws),

are an effective instrument for investigating the distribution laws of functions of random quantities and for investigating prob-

ability laws, which arise in problems of metrology.

The distributions of functions of random quantities Xi do not depend solely on the form of the distribution laws of

Xi and may change over wide ranges depending on the parameters of these laws.  Using methods of statistical modeling to

investigate the distribution law of Y, one can either construct an approximate model, which approximates this law in a spe-

cific case, or investigate the conditions which justify the use of linearization.

An increase in the accuracy of measurements of Xi under certain conditions, although by no means always, helps to

make the distribution of the value of Y, representing the function Xi, become closer to a normal law.

The use of statistical modeling and specialized software, an example of which is the Interval Statistics ISW system

[11], enables good approximate mathematical models of the distribution laws of functions of random quantities to be con-

structed (including in the form of mixtures of parametric models of the laws), when this law cannot be found analytically.
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TABLE 9. Results of a Check of the Goodness of Fit with the Distribution (3) of a

Sample of Values of the Function Y = sinX1cosX2X3 – sinX4cosX5X6

Criterion Value of the statistics Level of signficance achieved

Pearson χ2 for k = 15 15.0640 0.1796

Kolmogorov 0.4796 0.8847

Mises ω2 0.0423 0.7028

Anderson–Darling Ω2 0.3647 0.6035
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