
It is demonstrated that parametric tests of the homogeneity of means is robust with respect to disturbances in

the assumption of normality of observations of random variables. The power of parametric and nonparametric

tests is investigated.
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Tests to verify the hypothesis of homogeneity of means (homogeneity of mathematical expectations) are resorted to

when monitoring measuring instruments and in the statistical analysis of the results of experiments and quality control for

checking whether disturbances are present in the course of a process.

In the general case, a given hypothesis of equality of mathematical expectations corresponding to k samples will

have the form

H0 : µ1 = µ2 = ... = µk

under the competitive hypothesis

for at least some pair of indices i1, i2.

There are a number of parametric tests that may be used to compare two sample means to check some hypothesis H0:

with known variances; with unknown, but equal variances (Student’s test); with unknown and unequal variances; and with

the F-test. There also exists a number of nonparametric tests that may be used for this purpose, e.g., the Wilcoxon,

Mann–Whitney, and Kruskal–Wallis tests. Membership of the particular sample being analyzed to a normal law is the basic

assumption determining whether parametric tests should be used. Nonparametric tests are free of this requirement.

Despite what would appear to be the utter clarity of all the nuances associated with the application of these tests,

there are least two points that have not been sufficiently elucidated in the literature. First, it is not clear how important it is

to verify whether the samples being analyzed belong to a normal law when parametric tests are used to verify the homo-

geneity of means. Because of a number of objective and subjective factors, researchers now often resort to verification of the

normality of observations, as a consequence of which the potential error of conclusions are also subject to valid criticism.

Such a situation in the analysis of biomedical measurements, where samples are encountered that are in good agreement with

a normal law is quite typical, though highly questionable. On the other hand, we may note the use of expert judgements of

the preferability of nonparametric tests or the lack of any need for verifying normality, for example, when Student’s test is

used in the case of samples of large volume. The latter point is due to the rather vague data on the power of these tests.
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The objective of the present work is to investigate the influence of disturbances in the assumption of normality on

the distribution of the statistics of parametric tests and a comparative analysis of the power of the most well-known tests to

verify the homogeneity of means.

Tests to Compare Two Sample Means with Known Variances. The use of this comparison test (comparison with

respect to two samples) with known and equal variances involves the calculation of the statistic

(1)

where

and ni is the size of the ith sample, i = 1, 2.

In the case where the observations (measurement errors) belong to the normal laws, the statistic z(1) obeys a stan-

dard normal law.

Student’s Test for Comparison of Two Sample Means with Unknown but Equal Variances. With the use of this

comparison test, the statistic t is calculated from the expression [1]

(2)

where

If hypothesis H0 is valid and if the samples belong to a normal law, the (2) statistic will obey a tν Student’s distri-

bution with number of degrees of freedom ν = n1 + n2 – 2.

Test to Compare Two Sample Means with Unknown and Unequal Variances. With unequal volumes of the sam-

ples, n1 ≠ n2 , the statistic of the test has the form [2, 3]

(3)

In the case of a normal law and where hypothesis H0 is valid, the (3) statistic will obey a tν Student’s distribution

with number of degrees of freedom

If the unknown variances are equal, statistics (3) and (2) will be equivalent, while if they are not equal, we will

always have the number of degrees of freedom ν < n1 + n2 – 2. The greater is the difference between the two variances cor-

responding to the samples, the stronger will the distribution of the two statistics (3) and (2) differ.

Note that with n1 + n2 > 200, the difference between tests with statistics (1)–(3) practically vanishes, since with

increasing number of degrees of freedom the Student’s distribution reduces to a standard normal distribution and the corre-

sponding Student’s distributions are practically identical to a standard normal distribution. If a standard normal law is used

in such situations to calculate the attainable levels of significance in place of the corresponding Student’s distribution, the

errors in the calculated probability will not exceed 0.001.
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Fisher’s Test (F-test). In the case where the hypothesis of constancy (equality) of the variances is valid, the hypoth-

esis of the homogeneity of the mathematical expectations over k samples may be verified by means of this test [4].

Suppose there are k samples of volume n. The total sum of squares of the deviations over all samples

where is decomposed into two components Qkn = Q1 + Q2, with

The component Q1 is a measure of the difference in the levels of identification between the k samples, whereas Q2
determines the difference in the levels of identification within these samples. To verify the hypothesis, we use a test with

the statistic

(4)

If all the samples are extracted from a normal general population, then if hypothesis H0 is valid, the (4) statistic will

obey a Fν1,ν2
Fisher distribution with degrees of freedom ν1 = k – 1, ν2 = k(n – 1) [4].

The membership of the samples to a normal distribution is the basic assumption for the tests that have been enu-

merated here and that are used in the construction of distributions of the statistics in the case where the hypothesis H0 is to

be verified.

Mann and Whitney Test. This ranking test [5–8] is based on the Wilcoxon test [9] for independent samples. It is a

nonparametric analog of the t test for comparison of two mean values of continuous distributions. To calculate the statistic,

n1 + n2 values of the combined sample are ordered and the sum of the ranks R1 corresponding to the elements of the first

sample and the sum of the ranks R2 corresponding to the elements of the second sample are determined, and the following

are calculated:

U1 = n1n2 + n1(n1 – 1)/2 – R1;

U2 = n1n2 + n2(n2 – 1)/2 – R2.

The statistic of the test has the form

U = min{U1, U2}.

Instead of the U statistic, it is more convenient to use
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In the case where hypothesis H0 is valid, the discrete distribution of the statistic (5) with n1 + n2 > 60 is approxi-

mated quite well by a standard normal law when the size of each of the samples is not too small: n1, n2 ≥ 8. With samples of

smaller size, it must be kept in mind that the attainable level of significance (p value) calculated from the value of the statis-

tic in accordance with the distribution function of a standard normal law may differ markedly from the true value.

Kruskal–Wallis Test. This test is a development of the U test for verifying a hypothesis of equality of the means of

k samples [10, 11]. A combined sample of size is ordered and the sums of the ranks Ri for the ith sample, i =1, k

calculated. The statistic for verifying hypothesis H0 is determined by the expression

(6)

which constitutes the variance of the rank sums. For large ni and k, this statistic obeys a χ2
k–1 distribution in the case where

hypothesis H0 is in fact valid [11]. In these tests, it may be recalled that the χ2
k–1 distribution may be used under ordinary cir-

cumstances with ni ≥ 5, k ≥ 4.

In fact, with k = 2 discreteness is negligible with ni ≥ 30. The influence of discreteness rapidly decreases with increasing

sample size. If k = 3, the distribution of the statistic is approximated quite well by a χ2
k–1 distribution, beginning with ni ≥ 20, while

with ni ≥ 30 the agreement of the distribution of a statistic with a χ2
k–1 distribution does not deviate with respect to any of the good-

ness-of-fit tests used [12, 13]. If k ≥ 5, the agreement with a χ2
k–1 distribution does not deviate with ni ≥ 20.

Study of the Robustness of Parametric Tests Relative to Disturbance in an Assumed Normality. In conducting

these studies, the same technique of computer simulation and analysis of statistical laws was used as in other studies by the

present author [12, 13].

The distribution of statistics (1)–(3) under the assumption that hypothesis H0 is valid was studied for different dis-

tribution laws, in particular, in the case where the observations belong to a family with density
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Exponential law

Standard
normal law

Fig. 1. Empirical distributions of the (1) statistic for different laws of distribution

of the observed values, validity of hypothesis H0, and sample sizes n1 = n2 = 10.



with different values of the form parameter λ. With λ = 2, expression (7) yields the density of a normal distribution law. With

greater values of λ, the (7) distribution tends to a uniform distribution, while with low λ we obtain symmetric laws

with “heavy tails.”

Distributions of the (1) statistics obtained by means of simulation, in the case where the observed values belong to

the distribution laws of the (7) family for different values of the form parameter and exponential law with density ƒ(x) =

= (1/θ)exp(–x /θ), are presented in Fig. 1.

The following conclusions may be made on the basis of the results of the studies. Of course, the distribution of the

(1) statistic depends on laws to which the samples that are being analyzed belong. Because of the asymmetry of the observed

laws, there is a difference between the distribution of the statistic and the standard normal distribution, though this difference

is not so great as to lead to major errors in the use of the test. In the case of symmetric laws, it is found that the distribution

of the statistic is robust with respect to significant deviations in the observed laws from the normal (right up through a uni-

form distribution). The distributions of the statistics differ substantially from the standard normal law only for laws with

heavy tails, for example, in a Cauchy distribution with λ = 0.5 or λ = 0.2.
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Exponential law

t18 Student’s distribution

Normal law

Fig. 2. Empirical distributions of the (2) statistic for different laws of distribution

of the observed values, validity of hypothesis H0, and sample sizes n1 = n2 = 10.

Fig. 3. The same as in Fig. 2, but with sample sizes n1 + n2 = 100.



A similar pattern of the dependence of distributions of the (2) statistic on the laws of distribution of the observed val-

ues is reflected in Fig. 2 and this again enables us to arrive at identical conclusions regarding the robustness of the Student’s

test. The distributions of the (3) statistics, which are used in a test with unequal and unknown variances, depend similarly on

the observed laws. With increasing size of the samples, the test become even more robust with respect to deviations in the
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Standard normal law

Fig. 4. Empirical distributions of Mann–Whitney statistic (5) where different

competing hypotheses are valid and with sample sizes n1 = n2 = 10.

TABLE 1. Power of Tests Relative to the Alternative H1
1: µ2 = µ1 + 0.1σ

α n = 10 n = 20 n = 30 n = 50 n = 100

z test with known variances

0.10 0.145 0.167 0.186 0.217 0.283

0.05 0.078 0.091 0.105 0.126 0.175

0.01 0.018 0.022 0.026 0.034 0.053

Student’s t test with unknown and equal variances

0.10 0.144 0.166 0.185 0.216 0.283

0.05 0.077 0.091 0.104 0.125 0.174

0.01 0.017 0.021 0.026 0.034 0.053

ñ Mann–Whitney test

0.10 0.153 0.165 0.184 0.214 0.277

0.05 0.079 0.091 0.101 0.123 0.170

0.01 0.016 0.021 0.024 0.032 0.051

Fisher F test

0.10 0.109 0.116 0.125 0.141 0.183

0.05 0.055 0.061 0.067 0.078 0.108

0.01 0.012 0.013 0.015 0.020 0.031

Kruskal–Wallis H test

0.10 0.113 0.118 0.123 0.141 0.178

0.05 0.057 0.059 0.066 0.078 0.104

0.01 0.008 0.013 0.015 0.019 0.030



observed laws from the normal. In Fig. 3, distributions of the (2) statistics with sizes of the samples n1 = n2 = 100 and where

the samples belong to a normal law and to distributions of the (7) family with λ = 0.5 and 0.2 are shown in Fig. 3.

These results confirm a general law. That is, parametric tests associated with testing a hypothesis of mathematical

expectations are very robust with respect to deviations of the observed laws from the normal. This is valid even in the case

of multidimensional random variables [14].

The distributions of the (4) statistic of the F test are also robust with respect to deviations in the laws corresponding

to the analyzed samples from the normal. However, it should be emphasized that the application of a given test to verify the

homogeneity of means presupposes approximate equality of the variances of the samples that are being analyzed. If this con-

dition is not satisfied, the distributions of the statistic G(FH0) become different from the corresponding Fν1,ν2
distribution.

If the ratio of the maximum variance to the minimum variance of the variances being analyzed does not exceed 4, the devi-

ation in the distribution of this statistic from the Fisher Fν1,ν2
distribution will not exceed 0.01.

Power of Tests. We considered verification of the homogeneity of the means of two samples. For the tests being

studied, the power was analyzed for the case of identical variances of the samples relative to the following alternatives:

H1
1: µ2 = µ1 + 0.1σ;  H1

2: µ2 = µ1 + 0.2σ;  H1
3: µ2 = µ1 + 0.3σ;  H1

4: µ2 = µ1 + 0.4σ;  H1
5: µ2 = µ1 + 0.5σ;  H1

6: µ2 = µ1 + σ.

The distributions of the ñ statistic (5) of the Mann–Whitney test assuming that the verified G(ñH0) and competing G(ñH1
i)

hypotheses are valid in the case of sample sizes n1 = n2 = 10, are presented in Fig. 4. On the other hand, this enables us to

judge the power of a test relative to the alternatives that are being considered and, on the other hand, demonstrates the dis-

creteness of the distributions of the statistics, which must be taken into account when comparing the power of different tests.

Estimators of the power 1 – β of tests calculated on the basis of the resultsof simulation, where β is the probability

of an error of the second kind are presented in Tables 1–4 for H1
1, H1

2, H1
5, and H1

6, respectively, for different values of the

level of significance α (probability of an error of the first kind) and different sample sizes. The tests in the tables are ordered
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TABLE 2. Power of Tests Relative to the Alternative H1
2: µ2 = µ1 + 0.2σ

α n = 10 n = 20 n = 30 n = 50 n = 100

z test with known variances

0.10 0.202 0.258 0.306 0.389 0.552

0.05 0.115 0.155 0.192 0.259 0.409

0.01 0.030 0.045 0.060 0.092 0.182

Student’s t test with unknown and equal variances

0.10 0.199 0.256 0.304 0.387 0.551

0.05 0.112 0.153 0.190 0.257 0.407

0.01 0.028 0.043 0.059 0.090 0.179

ñ Mann–Whitney test

0.10 0.209 0.251 0.299 0.379 0.538

0.05 0.115 0.151 0.184 0.250 0.395

0.01 0.026 0.041 0.054 0.085 0.170

Fisher F test

0.10 0.131 0.165 0.198 0.261 0.408

0.05 0.071 0.094 0.119 0.168 0.290

0.01 0.017 0.025 0.034 0.056 0.121

Kruskal–Wallis H test

0.10 0.136 0.164 0.192 0.261 0.394

0.05 0.073 0.091 0.115 0.168 0.278

0.01 0.011 0.023 0.032 0.054 0.113



in terms of degree of power. Samples of distributions of the statistics are modeled with sample size N = 106, which made it

possible to estimate the power with error to within ±10–3. In the situation being considered here, a test with the (3) statistic

is equivalent to a test with statistic (2) and has the same power, and therefore is not shown.

The values of the power for multi-sample tests are substantially lower than for tests with statistics (1)–(3) and the

Mann–Whitney test (cf. Tables 1–4). In fact, because of the form of their structures, the F test and the Kruskal–Wallis test

cannot distinguish between the two alternatives µ2 > µ1 + ∆µ and µ2 < µ1 – ∆µ. We obtain an analogous situation if in expres-

sions (1)–(3), (5) the numerator is taken with respect to a modulus. Then the values of the power of these tests for a com-

parison with multi-sample tests must be taken with significance levels α/2.

Let us present some conclusions that may be arrived at on the basis of the results presented in Tables 1–4. First, it

is obvious that parametric tests possess greater efficiency than do nonparametric tests. Second, it may be stated that non-

parametric tests are absolutely slightly inferior in terms of power to parametric tests, thus, the Mann–Whitney test is inferi-

or to the Student’s test, and the Kruskal–Wallis test to the Fisher test, respectively. The apparent advantage of the ñ test with

n = 10 as reflected in the tables is explained by the fact that as a consequence of the discrete nature of the distribution of its

statistic, the true levels of significance differ from the values of α and slightly exceeds it. This also explains the “advantage”

of the H test relative to the F test in certain cases.

And, thirdly, as a rule, only the probability α of an error of the first kind is generally specified in actual practice

when these tests are used to verify a hypothesis of homogeneity of the mathematical expectations. The control procedures

most often assume small sample sizes. It is not always the case that the concern is whether or not the specification of the

probability β of an error of the second kind will alter the the hypothesis being tested when a competing hypothesis proves to

be valid. At the same time, it is desirable to ensure that the condition β ≤ α is observed in the test procedure when specify-

ing α. In this case, with a competing hypothesis H1
1 for α = 0.1 and sample sizes n = 100, the probability of an error of the
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TABLE 3. Power of Tests Relative to the Alternative H1
5: µ2 = µ1 + 0.5σ

α n = 10 n = 20 n = 30 n = 50 n = 100

z test with known variances

0.10 0.434 0.618 0.743 0.888 0.988

0.05 0.299 0.475 0.614 0.804 0.971

0.01 0.113 0.228 0.348 0.568 0.887

Student’s t test with unknown and equal variances

0.10 0.424 0.611 0.738 0.886 0.988

0.05 0.285 0.463 0.607 0.799 0.970

0.01 0.099 0.211 0.335 0.556 0.882

ñ Mann–Whitney test

0.10 0.430 0.596 0.725 0.875 0.985

0.05 0.283 0.451 0.586 0.781 0.964

0.01 0.090 0.199 0.310 0.529 0.865

Fisher F test

0.10 0.288 0.464 0.606 0.799 0.963

0.05 0.185 0.338 0.478 0.697 0.929

0.01 0.060 0.144 0.244 0.453 0.801

Kruskal–Wallis H test

0.10 0.286 0.452 0.586 0.799 0.970

0.05 0.184 0.321 0.457 0.697 0.940

0.01 0.043 0.132 0.227 0.434 0.824



second kind is given as β = 1 – 0.283 = 0.717 for the z test with the statistic (1). If α = 0.1, with sample sizes n = 100 this

test assures a value β = 0.061 < 0.1 only for the more remote alternative H1
4, and in order to distinguish with specified qual-

ity between the two hypotheses H0 and H1
1, samples of size n ≈ 1350 are needed.

If it is asked which alternatives with the same quality (α, β ≤ 0.1) may be distinguished with a sample size n = 10,

it turns out these are the alternatives in which µ2 differs from µ1 by a quantity of at least 1.15σ. Thus, with n = 20, if µ2
differs from µ1 by a quantity on the order of 0.82σ; with n = 30, by a quantity on the order of 0.67σ; with n = 50, by a

quantity on the order of 0.51σ; and with n = 100, by a quantity on the order of 0.364σ.

Thus, the studies have confirmed the robustness of parametric tests for verifying the homogeneity of the mathemat-

ical expectations. This means that if the law (laws) of distribution of the samples that are being analyzed differ from the nor-

mal, but there is no basis for supposing that the observed quantities belong to laws with heavy tails, it is still correct to apply

parametric tests with statistics (1)–(3), or, at least, the use of parametric tests will not lead to serious errors.

If the variances of the samples being analyzed are not known and, possibly, different, it is better to use a test with

statistic (3), since in the case of small sample sizes the distribution of the statistic (2) will differ substantially from a tn1+n2–2
Student’s distribution.

With n1 + n2 > 200, the standard normal law may be used as the distributions for all tests with statistics (1)–(3).

The nonparametric analog of tests with these statistics, i.e., the ñ Mann–Whitney test, is absolutely slightly inferior to the

latter in terms of efficiency.

It is best to apply the F test to verify the homogeneity of the mathematical expectations of a series of samples if there

is reason for assuming that the variances corresponding to the samples are roughly identical. Otherwise, the F test should be

avoided and the Kruskal–Wallis test, which is slightly inferior to the latter in terms of efficiency, should be used.
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TABLE 4. Power of Tests Relative to the Alternative H1
6: µ2 = µ1 + σ

α n = 10 n = 20 n = 30 n = 50 n = 100

z test with known variances

0.10 0.830 0.970 0.995 1.000 1.000

0.05 0.723 0.935 0.987 1.000 1.000

0.01 0.463 0.798 0.939 0.996 1.000

Student’s t test with unknown and equal variances

0.10 0.816 0.967 0.995 1.000 1.000

0.05 0.693 0.927 0.985 1.000 1.000

0.01 0.398 0.764 0.928 0.995 1.000

ñ Mann–Whitney test

0.10 0.811 0.961 0.993 1.000 1.000

0.05 0.681 0.917 0.981 0.999 1.000

0.01 0.368 0.739 0.911 0.993 1.000

Fisher F test

0.10 0.693 0.927 0.985 1.000 1.000

0.05 0.562 0.868 0.967 0.999 1.000

0.01 0.294 0.673 0.882 0.990 1.000

Kruskal–Wallis H test

0.10 0.680 0.917 0.981 1.000 1.000

0.05 0.548 0.849 0.981 0.999 1.000

0.01 0.231 0.640 0.861 0.987 1.000



It should be recalled that besides errors of the first kind there are also errors of the second kind. If the hypothesis

which is to be verified for given α has not deviated, this will still not mean that it is valid. In constructing a verification pro-

cedure and conjecturing which alternatives must differ, it is necessary to select sample sizes for which β will not less than α.

The present study was completed with the support of the Russian Foundation for Basic Research (Grant No. 06-01-00059).
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