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Université Victor Segalen Bordeaux 2
Bordeaux, France

email: mikhail.nikouline@u-bordeaux2.fr

BORIS LEMESHKO

Novosibirsk State Technical University
Novosibirsk, 630092, Russia

email: lemeshko@fpm.ami.nstu.ru

EKATERINA CHIMITOVA

Novosibirsk State Technical University
Novosibirsk, 630092, Russia

email: chim@mail.ru

ANGELIKA TSIVINSKAYA

Novosibirsk State Technical University
Novosibirsk, 630092, Russia

email: viento.acariciador@gmail.com

The problem of testing goodness-of-fit hypothesis for right censored data was
widely discussed in the literature. The modifications of well known tests such
as Kolmogorov, Cramer-von Mises-Smirnov and Anderson-Darling tests were

constructed. These modifications are based on the difference between non-
parametric Kaplan-Meier estimate and hypothetical survival function. In this

paper we investigate statistical properties of these modified tests. Also we

consider the classical goodness-of-fit tests based on using the transformation
of censored data to ”complete” sample by means of randomization. Another

approach bases on modification of the standard chi-square statistic of Pear-
son. In this paper we consider the modified Nikulin-Rao-Robson chi-square
statistic for right censored data. By means of computer simulation methods
we investigate statistic distributions and the power of these tests in case of
close competing hypotheses.
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1. Introduction

In reliability or survival studies lifetimes are typically right censored. The
observed data are usually presented as (t1, δ1), ..., (tn, δn), where δi = 1 if
ti is an observed lifetime, and δi = 0 if ti is a censoring time which means
that lifetime of i-th individual is greater than ti. There are various types
of right-censoring mechanism:

• If individuals are observed at a predetermined time, then the cen-
soring is called type I censoring.

• If a life test is terminated whenever a specified number of failures
have occurred, it is called type II censoring.

• Let lifetime T and censoring time C are independent random vari-
ables from distribution functions F (t) and FC(t) respectively. All
lifetimes and censoring times are assumed mutually independent,
and it is assumed that FC(t) does not depend on any of the pa-
rameters of F (t). So, ti = min(Ti, Ci) and δi = 1{Ti ≤ Ci}, it is
called independent random censoring.

In this paper we consider the problem of testing simple hypotheses of
the kind H0 : F (x) = F (x, θ), where parameter θ = (θ1, ..., θm)T is known,
and composite hypotheses H0 : F (x) ∈ {F (x, θ), θ ∈ Θ}. There are various
goodness-of-fit tests for censored data. In [5], [3] and [14] the modification
of classical Kolmogorov, Cramer-von Mises-Smirnov and Anderson-Darling
tests for I and II censoring types are given. The Renyi test [15] can also be
used for type I and II censored samples. In case of randomly censored data
these tests can be modified by using Kaplan-Maier estimate instead of em-
pirical distribution function in the formulas of statistics (see, for example,
[10], [12], [16], [7]).

Kim [9], Habib and Thomas [6], Hollander and Peña [8] considered
natural modifications of the Nikulin-Rao-Robson statistic [13] to the case
of censored data. These tests are also based on the differences between
two estimators of the probabilities to fall into grouping intervals: one is
based on the Kaplan-Meier estimator of the cumulative distribution func-
tion, other – on the maximum likelihood estimators of unknown parameters
of the tested model using initial non-grouped censored data. The idea of
comparing observed and expected numbers of failures in time intervals was
discussed in [1] and was developed by Hjort [7]. In [2] this direction was
developed considering the choice of random grouping intervals as data func-
tions and writing simple formulas useful for computing test statistics for



mostly applied classes of survival distributions.
Though a great number of papers are devoted to the problem of test-

ing goodness-of-fit for censored samples, there are still a lot of questions
concerning their application in practice. Is it correct to use the asymp-
totical results obtained in papers in case of limited sample sizes? How
to simulate statistic distributions under true null hypothesis for randomly
censored sample when the censoring distribution F c(t) is unknown? Which
tests have a higher power for close competing hypotheses? So, the aim of
this paper is to investigate the test statistic distributions under true null
hypothesis and the test power for close competing hypotheses. The research
is carried out with computer simulation technique (Monte-Carlo method).

2. Modified Kolmogorov, Cramer-von Mises-Smirnov and
Anderson-Darling goodness-of-fit tests

The value

Dn = sup
t<∞

∣∣∣F̂n(t)− F (t; θ)
∣∣∣ , (1)

where F̂n(t) is the Kaplan-Meier estimator for cumulative distribution func-
tion F (t), is used in the modified Kolmogorov test statistic for right cen-
sored data. In testing hypotheses, the statistic is usually used with Bol-
shev’s correction [4] of the form
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Modified Cramer-von Mises-Smirnov test statistic
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can be calculated by the following formula
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where nr is the number of uncensored observations.



Modified Anderson-Darling test statistic

ScΩ =
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can be calculated as following
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2.1. Type I and II censored samples

When testing a simple hypothesis by type I and II censored samples there
is the limiting statistic distribution of ScK [3] which is defined as

Kc
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+∞∑
i=−∞

(−1)i exp(−2i2S2) · P
{∣∣∣∣X − 2iS

√
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}
,

(5)
whereX is a standard normal random variable and a is the censoring degree.
When a = 0 the limiting distribution of ScK coincides with the Kolmogorov
distribution law.

For the Cramer-von Mises-Smirnov and Anderson-Darling type tests the
tables of upper percentage points for statistic distributions under true null
hypothesis were obtained in [14].

By means of computer simulation technique we have investigated consid-
ering statistic distributions for various censoring degrees and samples sizes.
In case of simple hypotheses sufficient goodness-of-fit of the empirical distri-
butions G(ScK |H0) to the limiting law Ka

c (S) has been shown for the sample
size beginning from n = 30, with a censoring degree being less than 0.5.
When a censoring degree was increased to 0.95 a sufficient goodness-of-fit of
G(ScK |H0) to Ka

c (S) was observed only for n > 500. Similar regularities for
the statistic distributions were observed for the Cramer-von Mises-Smirnov
test and the Anderson-Darling test. For these criteria we compared sam-
ple quantiles obtained from the empirical distributions of the test statistics
with the upper percentage points given in [14] depending on the sample
size and the censoring degree.

When testing a composite hypothesis there are no principal problems to
simulate test statistic distribution for given parametric distribution under



null hypothesis, sample size and censoring scheme (for censoring of type I
or II). Using simulated statistic distribution one can estimate the p-value
in testing hypothesis H0.

2.2. Randomly censored samples

Investigation of considering statistic distributions for various distributions
of censoring times F c(t) has revealed an essential dependence of statistic
distributions on F c(t). As an example in Figure 1 you can see the modified
Kolmogorov statistic distributions when testing composite goodness-of-fit
hypothesis with the Weibull distribution for different censoring degrees.
In this example the distributions of censoring times were taken from the
family of the Beta I distributions, where parameters were taken so that the
censoring degree would be approximately equal to 0.2, 0.4, 0.6, 0.8.

Figure 1. Kolmogorov test statistic distributions for different censoring degrees when

testing the composite hypothesis of goodness-of-fit with the Weibull distribution, n = 100

Figure 2 illustrates the modified Kolmogorov statistic distributions
when testing composite goodness-of-fit hypothesis with the Weibull dis-
tribution for two different distributions of censoring times. The first one
is the Beta I distribution and the second one is the Weibull distribution.
Parameters of these distributions were taken so that the censoring degree
would be approximately equal to 0.6. As it is seen from the figure statistic
distributions strongly depend not only on the number of censoring times,
but also on that how they are distributed.

This result is a serious barrier for application of these modified tests
in practice, because the distribution of censoring times F c(t) is usually
unknown.



Figure 2. Kolmogorov test statistic distributions for different distributions of censor-

ing times when testing the composite hypothesis of goodness-of-fit with the Weibull

distribution, n = 100

2.3. Application of classical tests for censored samples

Here we would like to discuss an idea of transformation of censored sample
into a ”complete” sample in order to apply the classical goodness-of-fit
tests. At first, let us consider a simple goodness-of-fit hypothesis H0 :
F (x) = F (x, θ). In the sample of observations (t1, δ1), (t2, δ2), ..., (tn, δn)
we replace all censored observations (ti, δi = 0) = Ci by simulated times
T̂i = F−1(ξi), where ξi is uniformly distributed at the interval [F (Ci), 1).
So, the classical Kolmogorov, Cramer-von Mises-Smirnov and Anderson-
Darling tests can be applied for transformed sample. In case of simple
hypothesis testing nonparametric statistic distributions obtained for such
transformed samples converge to their limiting distributions very quickly.
For the sample size n ≥ 20 one can use the corresponding limiting law (the
Kolmogorov distribution, a1(S) or a2(S)) for calculation of p-value without
any risk of making a great mistake.

It is obvious that such procedure results in decrease of the test power.
But if the censoring degree is not high (less than 30 percent) the losses in
power are not large.

In the case of composite hypothesis testing the application of consid-
ered procedure is more complicated. Let θ̂n is the maximum likelihood
estimate of unknown parameter calculated by the original censored sample.
We replace all censored observations (ti, δi = 0) = Ci by simulated times
T̂i = F−1(ξi), where ξi is uniformly distributed at the interval [F (Ci, θ̂n), 1).
After this transformation it is necessary to estimate unknown parameters
of hypothetical distribution by obtained ”complete” sample again. In case



of small censoring degrees, when there is no significant bias of parameter
estimates, the distributions of classical test statistics for transformed sam-
ples are close to the statistic distribution models for originally complete
samples when testing the same composite hypothesis. So, if the censoring
degree is not large it is possible to use the apparatus of testing composite
hypotheses by complete samples. In [11] the approximations of the limiting
statistic distributions for testing composite hypotheses were obtained for a
wide range of distribution laws when using maximum likelihood estimates
of unknown parameters.

3. NRR χ2 test for censored samples

Chi-squared type tests require dividing an observed interval [0, τ ] into k

smaller intervals Ij = (aj−1, aj ], a0 = 0, ak = τ .

Denote by Uj =
n∑

i:Xi∈Ij

δi the number of observed failures and by ej an

”expected” number of failures in the interval Ij , j = 1, ..., k.
The NRR χ2 test statistic [2] can be written in the form
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where
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V̂ − is the general inverse of the matrix V̂ ,
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ĈljĈl′jÂ
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where λ(t) is the hazard rate function and θ̂ is the maximum likelihood
estimate of unknown parameter.

The choice of group intervals. We recommend to take aj as random
data functions so that to divide the interval [0, τ ] into k intervals with
equal expected numbers of failures. So aj can be calculated as follows.
Define

Ek =
n∑
i=1

Λ
(
ti, θ̂

)
, Ej =

j

k
Ek, j = 1, . . . , k.

Set

bi = (n− i) Λ
(
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)
+

i∑
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Λ
(
t(i), θ̂

)
, t(0) = 0.

If i is the smallest natural number verifying Ej ∈ [bi−1, bi], j =
1, ..., k − 1, then

âj = Λ−1

((
Ej −

i∑
l=1

Λ
(
t(l), θ̂

))
/ (n− i+ 1) , θ̂

)
, âk = t(n),

where Λ−1 is the inverse of the cumulative hazard function Λ. We have

0 < â1 < â2 < ... < âk = τ.

Under this choice of the intervals ej = Ek/k for any j.
The limit distribution of the test statistic is χ2

r, r = rank(V −). So the
hypothesis is rejected with approximate significance level α if Y 2 > χ2

α (r).
By means of computer simulation we investigate the NRR statistic dis-

tribution for various sample sizes, censoring degrees, number of intervals
k. For example, in Figure 3 there are the NRR statistic distributions when
testing the composite hypothesis of goodness-of-fit with the Weibull distri-
bution by randomly censored samples of size n = 100 for different censoring
degrees. The number of intervals k = 5. As you can see from the figure,
obtained empirical distributions of considering statistic are rather close to
the limiting χ2

4-distribution.
With the sample size growth NRR statistic distributions converge to the

corresponding χ2
r distribution law. But the minimal sample size for which

empirical distributions of the NRR statistic fit with the corresponding χ2
r

distribution law depends on the censoring degree.



Figure 3. RRN χ2 test statistic distributions for different censoring degrees when testing

the composite hypothesis of goodness-of-fit with the Weibull distribution, n = 100, k = 5

4. Conclusions

There are no principal difficulties in the usage of modified Kolmogorov,
Cramer-von Mises-Smirnov and Anderson-Darling tests in case of type I and
II censored data. One can use the limiting statistic distribution or tables of
percentage points for these tests in simple hypothesis testing. While testing
a composite hypothesis it is possible to simulate statistic distribution for
considering distribution under test and given censoring scheme. But when
we have randomly censored data the distributions of these statistics strongly
depend on the distribution of censoring times. This fact doesn’t enable to
recommend using these tests for randomly censored samples.

There is a good possibility to use considered transformation of a cen-
sored sample to ”complete” one for application of classical Kolmogorov,
Cramer-von Mises-Smirnov and Anderson-Darling tests. In case of small
censoring degrees, when there is no significant bias of parameter estimates,
it is possible to use the approximations of the limiting statistic distributions
obtained in [11] for calculation of p-value while testing composite hypothe-
ses. The loss of power of the test applied for transformed samples is not
significant if the censoring degree is not high.

The NRR χ2 test has a number of advantages comparing with the con-
sidered nonparametric tests. In particular, there is no significant depen-
dence of the NRR statistic distributions (in case of limited sample sizes)
on the distribution of censoring times. With the sample size growth NRR
statistic distributions converge to the corresponding χ2

r distribution law. It
is possible to choose the number of grouping intervals and boundary points
for considering pair of competing hypotheses to increase the test power.
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