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Abstract. The comparative analysis of power of classical variance homogeneity tests
(Fisher’s, Bartlett’s, Cochran’s, Hartley’s and Levene’s tests) is carried out. Distributions of
tests statistics are investigated under violation of assumptions that samples belong to the
normal law. Distributions and power of nonparametric tests for dispersion characteristics
homogeneity are researched (Ansari-Bradley’s, Mood’s, Siegel-Tukey’s tests). The
comparative analysis of power of classical variance homogeneity tests with power of
nonparametric tests is carried out. Tables of percentage points for Cochran’s test are
presented in case of the distributions which are different from normal.
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1 Introduction

Tests of samples homogeneity are often used in various applications of statistical
analysis. The question can be about checking hypotheses about homogeneity of
samples distributions, population means or variances. Naturally the most complete
findings can be done in the first case. However researcher can be interested in
possible deviations in the sample mean values or differences in dispersion
characteristics of measurements results.

Application features of nonparametric Smirnov and Lehmann-Rosenblatt
homogeneity tests and analysis of their power were considered in [1]. In [2] it was
shown that classical criteria for testing hypotheses about homogeneity of means are
stable to violation of normality assumption and comparative analysis of the power
of various tests, including nonparametric, was given.

One of the basic assumptions in constructing classical tests for equality of
variances is normal distribution of observable random variables (measurement
errors). Therefore the application of classical criteria always involves the question
of how valid the results obtained are in this particular situation. Under violation of
assumption that analyzed variables belong to normal law, conditional distributions
of tests statistics, when hypothesis under test is true, change appreciably.

All available publications do not give full information on the power of the classical
tests for homogeneity of variances and on comparative analysis of the power of the
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classical tests and nonparametric criteria for testing hypotheses about the
homogeneity of the dispersion characteristics (scale parameters).
This work continues researches of stability of criteria for testing hypotheses about
the equality of variances [3]. Classical Bartlett’s [4], Cochran’s [5], Fisher’s,
Hartley’s [6], Levene’s [7] tests have been compared, nonparametric (rank) Ansari-
Bradley’s [8], Mood’s [9], Siegel-Tukey’s [10] tests have been considered. The
purpose of the paper is
— research of statistics distributions for listed tests in case of distribution laws of
observable random variables which are different from normal,
— comparative analysis of criteria power concerning concrete competing
hypotheses;
— realization of the possibility to apply the classical tests under violation of
assumptions about normality of random variables.
A hypothesis under test for equality of variances corresponding to m samples will
have the form
H,:ci=0,=..=0. )
and the competitive hypothesis is
H o, #0,, )
where the inequality holds at least for one pair of subscripts i,i, .
Statistical simulation methods and the developed software have been used
for investigating statistic distributions, calculating percentage points and
estimating tests power with respect to various competing hypotheses. The

sample size of statistics under study was N =10°. Such N allowed absolute
value of difference between true law of statistics distribution and simulated
empirical not to exceed 107 .

Statistic distributions have been studied for various distribution laws, in particular,
in case when simulated samples belong to the family with density

De(8,)= /(x:0,.6,,0,) = ——0 )exp{—[|x_92|]oJ 3)

- 20,1(1/8, 0,

with various values of the form parameter 0,. This family can be a good model for
error distributions of various measuring systems. Special cases of distribution
De(6,) include the Laplace (6, =1) and normal (8, =2) distribution. The family
(3) allows to define various symmetric distributions that differ from normal: the
smaller value of form parameter 6, the "heavier" tails of the distribution De(8,),
and vice-versa the higher value the "easier" tails.
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The competing hypotheses of the form H,: o, =do, have been considered in

comparative analysis of the test power. That is, a competing hypothesis
corresponds to the situation when m—1 samples belong to the law with 6 =c,

while one of the samples, for example, with number m has some different
variance.  Hypothesis  under test corresponds to  the  situation

. 2 _ 2 _ 2 _ 2
H,: 6/, =0,=..=0, =0,.

2 Bartlett’s test
Bartlett's test statistic [4] is

. L (g1 1]
* _M|:1+3(m—1)(;v,. NH ’ @

M= Nln(izm:v,.Sfj—Zm:vi InS?,
Ni:l i=1

m is the number of samples; n, are the sample sizes; v, =n,, if mathematical

where

m
expectation is known, and v, =n, -1, if it is unknown; N =ZV,-; A
i=l1

estimators of the sample variances. If the mathematical expectation is unknown,

. 1 & = . .
the estimators are S :_IZ(X —Xi)?, where X, — j-th observation in

m—1=

J— 1 i
sample i, X :n_ZXﬁ .
i Jj=1

If hypothesis H, is true, all v, >3 and samples are extracted from a normal

population, then the statistic (4) has approximately the 7’ _, distribution. If

measurements are normally distributed, the distribution for the statistic (4) is
almost independent of the sample sizes n, [3]. If distributions of observed

variables differ from the normal law, the distribution G(y |H0) of statistic (4)

becomes depending on #, and differs from y_ .

3 Cochran’s test

When all », are equal, one can use simpler Cochran’s test [5]. The test statistic Q
is defined as follows:
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SZ
= Tmx 5
0 S48 ++S2 ©®)
where S = max(Slz,S,f,...,Si) , m is the number of independent estimators of

variances (number of samples), S’ are estimators of the sample variances.

Distribution of Cochran’s test statistic strongly depends on the sample size. The
reference literature gives only tables of the percentage points for limited number of
values », which are used in hypothesis testing.

4 Hartley’s test

Hartley’s test [6] as well as Cochran’s test is used in case of samples of equal size.

Hartley’s test statistic for homogeneity of variances is

2
N

F=m ©)
smin

:min(S,Z,Szz,...,S,i), m — number of

independent estimators of variances (number of samples).
Literature gives tables of percentage points for distribution of statistic (6)
dependingon v, =m and v, =n-1.

min

where Siaxzmax(Slz,Szz,...,S,i), Sa

5 Levene’s test
The Levene’s test statistic [7] is defined as:
— — 2
n; (Zio —Z e )
p , (7
i — \2
(2,-2-)

i Ms

w

_N-m¥
m—1

M

Jj=1
where m is the number of samples, n, is the sample size of the i-th sample,

, X, —J -th observation in sample 7, X, is the mean

N=n. 7 -|x, - %
i=1

of i -th sample, Z:. is the mean of the Z, for sample 7, Z.. — the mean of all Z;.

In some descriptions of the test, for example [11], it is said that in case when
samples belong to the normal law and hypothesis H, is true, the statistic has a

F, , -distribution with number of degrees of freedom v, =m—1 andv, =N -m.

Actually distribution of statistics (7) is not Fisher's distribution F, ., . Therefore
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percentage points of distribution were investigated using statistical simulation
methods [12].

Levene’s test is less sensitive to departures from normality. However it has less
power.

The original Levene’s test used only sample means. Brown and Forsythe [13]
suggested using sample median and trimmed mean as estimators of the mean for
statistic (7).

However our researches have shown that using in (7) sample median and trimmed
mean leads to another distribution G(W|H0) of statistics (7).

6 Fisher’s test
Fisher’s test is used to check hypothesis of variances homogeneity for fwo samples

of random variables. The test statistic has a simple form

; ®)

2
Sy
F= =
2
where 57 and s; — unbiased variance estimators, computed from the sample data.
In case when samples belong to the normal law and hypothesis H, : o =o; is

true, this statistic has the F, | -distribution with number of degrees of freedom
v, =n —1 andv, =n,-1. A hypothesis under test is rejected if F" < F, or

o/2,v,v,
F*>F

1-a/2,vi,vy °

7 Comparative analysis of power

At given probability of type I error o (to reject the null hypothesis when it is true)
it is possible to judge advantages of the test by value of power 1—[, where B is

the probability of type II error (not to reject the null hypothesis when alternative is
true). In [14] it is definitely said that Cochran’s test has lower power in
comparison with Bartlett’s test. In [3] it was shown that Cochran’s test has greater
power by the example of checking hypothesis about variances homogeneity for five
samples.

Research of power of Bartlett’s, Cochran’s, Hartley’s, Fisher’s and Levene’s tests
concerning such competing hypotheses H,: o, =do,, d#1 (in case of two

samples that belong to the normal law) has shown that Bartlett’s, Cochran’s,
Hartley’s and Fisher’s tests have equal power in this case. Levene’s test
appreciably yields to them in power.

In case of the distributions which are different from normal, for example, family of
distributions with density (3), Bartlett’s, Cochran’s, Hartley’s and Fisher’s tests

455




SMTDA 2010: Stochastic Modeling Techniques and Data Analysis
International Conference, Chania, Crete, Greece, 8 - 11 June 2010

remain equivalent in power, and Levene’s test also appreciably yields to them.
However in case of heavy-tailed distributions (for example, when samples belong
to the Laplace distribution) Levene’s test has advantage of greater power.
Bartlett’s, Cochran’s, Hartley’s and Levene’s tests can be applied when number of
samples m > 2 . In such situations power of these tests is different. If m >2 and
normality assumption is true, given tests can be ordered by power decrease as
follows:

Cochran’s > Bartlett’s > Hartley’s > Levene’s.
The preference order remains in case of violation of normality assumption. The
exception concerns situations when samples belong to laws with more “heavy
tails” in comparison with the normal law. For example, in case of Laplace
distribution Levene’s test is more powerful than three others.

8 Ansari-Bradley’s test

Nonparametric analogues of tests for homogeneity of variances are used to check
hypothesis that two samples with sample sizes #; and n, belong to population
with identical characteristics of dispersion. As a rule equality of means is
supposed.

The Ansari-Bradley’s test statistic [8] is:

4 1 1
S:z{nl+32+ _Ri_n1+22+ I}’ ©
i=1

where R, - ranks corresponding to elements of the first sample in general

variational row. In case when samples belong to the same law and checked
hypothesis H,, is true, distribution of statistics (9) does not depend on this law.

Discreteness of distribution of statistics (9) can be practically neglected when
n, n, >40.

9 Siegel-Tukey’s test

The variational row constructed on general sample x, <x, <..<x, , where
n=mn, +n,, is transformed into such sequence

XX, X X5 X35, X, 55

n-1° Xy 35X45 X554+ 5

i.e. row of remained values is “turned over” each time when ranks are assigned to
pair of extreme values. Sum of ranks of sample with smaller size is used as test
statistics. When n, <n, test statistic is defined as:

"

R=D>'R,. (10)
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Discreteness of distribution of statistics (10) can be practically neglected when
ny, n, >30.

10 Mood’s test
The test statistic is [9]:

Mo Z( nl+n2+1j ’ an

where R, - ranks of sample with smaller size in general variational row.

Discreteness of distribution of statistics (11) can be neglected at all when
ny, ny >20.

When sample sizes n;, n, >10 discrete distributions of statistics (9), (10) and (11)

are well enough approximated by normal law. Therefore instead of statistics (9),
(10) and (11) normalized analogues are more often used, which are approximately
standard normal.

Results of power research have shown appreciable advantage of Mood’s test and
practical equivalence of Siegel-Tukey’s and Ansari-Bradley’s tests. Of course,
nonparametric tests yield in power to Bartlett’s, Cochran’s, Hartley’s and Fisher’s
tests. Figure 1 shows graphs of criteria power concerning competing hypotheses
H!:o,=1.1c,and H;: o, =150, depending on sample size n, in case when
o =0.1 and samples belong to the normal law. As we see, advantage in power of
Cochran’s test is rather significant in comparison with Mood’s test - most powerful
of nonparametric tests. Let's remind that Bartlett’s, Cochran’s, Hartley’s and
Fisher’s tests have equal power in case of two samples.

Distributions of nonparametric tests statistics do not depend on a law kind, if both
samples belong to the same population. But if samples belong to different laws and
hypothesis of variances equality H, is true, distributions of statistics of

nonparametric tests depend on a kind of these laws.

11 Cochran’s test in case of laws different from normal

Classical tests have considerable advantage in power over nonparametric. This
advantage remains when analyzed samples belong to the laws appreciably different
from normal. Therefore there is every reason to research statistics distributions of
classical tests for checking variances homogeneity (construction of distributions
models or tables of percentage points) in case of laws most often used in practice
(different from the normal law). Among considered tests Cochran’s test is the most
suitable for this role.
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Fig. 1. Power of tests concerning competing hypotheses H 11 and H 12 depending on sample

size m when o = 0.1 and samples belong to normal law

In case when observable variables belong to family of distributions (3) with
parameter of the form 6, =1, 2,3, 4, 5 and some values n, tables of upper
percentage points (1%, 5%, 10%) for Cochran’s test were obtained using statistical
simulation (when number of samples m =2 +5). The results obtained can be used
in situations when distribution (3) with appropriate parameter 0, is a good model

for observable random variables. Computed percentage points improve some
results presented in [3] and expand possibilities to apply Cochran’s test.
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