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Abstract. There are a good number of tests that are available for testing a hy-
pothesis that samples come from populations with the same variance. It is well
known that classical tests for comparing variances are very sensitive to departures
from normality. However, they are more powerful than nonparametric ones. So, the
new approach for testing hypotheses of variances homogeneity is proposed. Soft-
ware for comparing variances using parametric tests (F -test, Cochran’s, Bartlett’s,
Hartley’s, Levene’s, modified Levene’s, Neyman-Pearson’s, Z-variance, Overall-
Woodward modified Z-variance and O’Brien tests) when samples are from any
distribution (skewed, leptokurtic, platykurtic) has been developed. In this case the
p-value is defined using a simulated empirical distribution in real-time testing of the
hypothesis. Recommendations on choosing the most powerful test for a particular
form of data distribution are given.
Keywords: homogeneity of variances, power, simulation study.

Introduction

Testing for equality of variances often attracts attention as preliminary to
other analyses involving comparisons of means, such as an analysis of vari-
ance (ANOVA) or the t-test. Correct application of tests for means equality
implies that variances are equal.

However, preliminary tests of variances equality used before applying a
test of location are not recommended by some statisticians. Many authors
(e.g., Zar[1]) stated that the tests presently available have such a poor per-
formance that they are not really useful, with ANOVA being more robust
to departures from homoscedasticity than can be detected using a test of
homogeneity of variances, especially under non-normal conditions. But re-
cent study by Legendre and Borcard[2] has showed that “heterogeneity of
variances is always a problem in ANOVA, and is troublesome even in the
most benign cases, i.e., when one of the variances is smaller than the others”.
So, there is a great need for a test that will correctly detect heterogeneity of
variances before applying procedures for means comparison.

The homogeneity of variances tests per se are also of interest in a number
of research areas. A variance could be considered as an indicator of unifor-
mity, e.g. in the quality control of manufacturing processes, in agricultural
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production systems or in the development of educational methods. Differ-
ences in variability of populations could be interesting to biologists, e.g. in the
study of genetic diversity or mechanisms of adaption (Boos and Brownie[3]).

So, we want to know whether variances are equal, that is to test hypothesis
of variances homogeneity. The null hypothesis for variances equality of m
samples has the following form: H0 : σ2

1 = σ2
2 = . . . = σ2

m and the alternative
hypothesis is H1 : σ2

i 6= σ2
j , where the inequality holds at least for one pair

of i, j.
To test hypothesis H0 there are a good number of available tests both

parametric and nonparametric. Moreover, there is considerable statistical
literature on testing homogeneity of variances. Therefore, potential user of
a test for equality of variances is faced with a confusing array of information
concerning which test to use. And worse, this information is sometimes
conflicting.

What are the problems when testing equality of variances? Primarily we
should choose an appropriate test. Of course, we want to have a robust and
powerful test. But it is well known that most parametric (classical) tests
for comparing variances are extremely sensitive to the normality assumption.
At the same time there are many nonparametric tests that do not depend
on sample distribution. But in terms of power all parametric tests have an
advantage; they are always significantly more powerful than nonparametric
ones.

So, if you want to test the hypothesis of variances equality, you will have
to choose between robustness and power. That is why we propose a new
approach to testing homogeneity of variances that will help us to avoid prob-
lems with the validity of classical tests. In this case the p-value is calculated
using a simulated empirical distribution in real-time testing the hypothesis.
Then we only should know what test is the most powerful in the particular
situation.

Thus, the purpose of this study is to:

• give a possibility to correctly apply parametric tests when the normality
assumption may not be true;

• give recommendations on choosing the most powerful test for a particular
form of data distribution;

• give recommendations on choosing the best test in terms of robustness
in the case of using a software that do not provides simulation.

1 Description of tests studied

A great number of tests for the variances homogeneity have been proposed
and examined in statistical literature. But so far, the most frequently cited
and used methods have been the F -test, Bartlett’s, Cochran’s, Hartley’s and
Levene’s tests. Below we give a description of these tests.
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F-test. Let S2
1 and S2

2 denote the variance estimates of samples with
sizes n1 and n2 respectively, the classical F-test utilizes the following test
statistic:

F = S2
1/S

2
2 .

This test statistic has the Fn1−1,n2−1-distribution if the null hypothesis
of variances equality is true. The null hypothesis is rejected if the statistic F
is either too large or too small.

Bartlett’s test was essentialy a generalization of the F -test to the several
k > 2 populations case (Bartlett[4]). The test statistic B involves a compari-
son of the separate within-group sums-of-squares to the pooled within-group

sum-of-squares: B = (N − k) lnS2
p −

k
∑

i=1

(ni − 1) lnS2
i , where N =

k
∑

i=1

ni,

S2
p = 1

N−k

k
∑

i=1

(ni − 1)S2
i is the pooled estimate for the variance. The cor-

rection factor CB is calculated as: CB = 1+ 1
3(k−1)

(

∑k
i=1

1
ni−1 −

1
N−k

)

and

applied to B to obtain a corrected BC statistic:

BC = B/CB .

If hypothesisH0 is true and samples are normally distributed, the statistic
BC has approximately the χ2

k−1 distribution.

Cochran’s test. The test introduced by Cochran[5] was considerably
easier to compute than the tests used at that time:

C = S2
max/

(

S2
1 + S2

2 + . . .+ S2
k

)

.

Unfortunately, the distribution of Cochran’s test statistic depends on the
sample size. Tables of critical values for some combinations of the sample
sizes n and the number of groups k have been presented by different authors.
If the test statistic C is more than the critical value, the null hypothesis H0

is rejected.
Cochran’s test seems to be the best method to detect cases when the

variance of one of the groups is much larger than that of the other groups.

Hartley’s test. This test was proposed by Hartley[6] in 1950. It is well
known as the ”F -max” test and is very simple to calculate. Its test statistic
is just a ratio between the largest and the smallest sample variances:

H = S2
max/S

2
min.

It should be noted that Hartley’s test resembles Cochran’s test with a less
optimal use of the information available. One can find in the literature tables
of critical values created by Hartley. The tables evaluates the test statistic
with degrees of freedom k and n − 1 (if n1 = n2 = . . . = nk = n). The
hypothesis H0 should be rejected if the test statistic H is large.

 !"#$%%%%%%%%%%%&''



�

���������	
���
	�������������������	
�����	�������	��������	��������	���	����	�����	����	���

������� �	��
!"
����	���������#������

�

�

�

�

�

Levene’s test. In 1960, Levene[7] proposed using the one-way ANOVA
F statistic on the variables Zij = |Xij − X̄i| as a method for testing equality
of variances. The test statistic is given by:

L =

(

(N − k)
k

∑

i=1

ni

(

Z̄i − Z̄
)2

)

/



(k − 1)
k

∑

i=1

ni
∑

j=1

(

Zij − Z̄i

)2



 ,

where X̄i is the estimated mean of the ith sample, Z̄i is the mean of Zij for
ith sample and Z̄ is the overall mean of the Zij .

In some descriptions of this test it is said that the statistic L has a
Fk−1,N−k-distribution. Actually, distribution of Levene’s test statistic is not

Fisher’s distribution! If sample sizes are less than 40, the distribution of the
statistic differs greatly from Fisher’s one. We must take this into account
when using this test.

Levene’s test is less sensitive to departures from normality as compared
to other classical tests. However, it is less powerful.

Modified Levene’s test. Miller[8] showed that ANOVA on Levene’s
variables |Xij − X̄i| will be asymptotically incorrect if the population means
are not equal to the population medians (essentially requiring symmetry).
Brown and Forsythe[9] suggested using the sample median instead of the
mean in computing Zij in the Levene’s test statistic. That is Zij = |Xij−X̃i|,

where X̃i is the median of the ith sample. This modification allows us to
overcome the above problem by centering the variables.

For this study we have also chosen a group of tests that are referred to as
the most powerful ones in recent publications. These are Neyman-Pearson’s,
Z-variance, Overall-Woodward modified Z-variance and O’Brien tests.

Neyman-Pearson’s test. The test statistic is defined as the ratio of
arithmetic mean to the geometric mean of variance estimates:

P =

(

1

k

k
∑

i=1

S2
i

)

/

(

k
∏

i=1

S2
i

)

1

k

.

Th null hypothesis H0 should be rejected, if P > Pα,n,k, where Pα,n,k is a
critical value of this test.

Z-variance test. A normal deviation transformation is used to obtain
Z-score equivalents of the sample variance. The test statistic proposed by
Overall and Woodward[10] is:

V =

(

k
∑

i=1

Z2
i

)

/(k − 1),
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where Zi =
√

(ci(ni − 1)S2
i ) /MSE −

√

ci(ni − 1)− ci/2, ci = 2 + 1/ni,

MSE =

(

k
∑

i=1

ni
∑

j=1

(

Xij − X̄i

)2

)

/ (N − k), N =
k
∑

i=1

ni - total sample size.

If samples are normally distributed and the null hypothesis is true, the
statistic V does not depend on the sample size and has approximately the
Fk−1,∞-distribution.

Overall-Woodward modified Z-variance test. As other classical
tests the Z-variance test is extremely sensitive to the normality assumption.
So, Overall and Woodward[11] conducted a series of studies to determine a
c value so that variances of Zi would remain stable when samples are not
normally distributed. Using regression they have found a c value based on
the sample size and the kurtosis.

The new c value is calculated by: ci = 2.0
(

2.9+0.2/ni

K̄

)1.6(ni−1.8K+14.7)/ni

,

where K̄ is the mean of the kurtosis indices for all samples.

The kurtosis index used by Overall and Woodward is:

Ki =

(

ni
∑

j=1

G4
ij

)

/(ni − 2), where Gij =
(

Xij − X̄i

)

/
√

S2
i (ni − 1)/ni.

Our study has shown that this test remains stable for distributions with
different kurtosis indices. However, it is not true for skewness indices.

O’Brien test. O’Brien[12] has claimed that his test is a general method
that does fairly well for behavioral science data. He also states that this
ANOVA-based test is robust to departures from normality.

The O’Brien test statistic is calculated in the followwing way. First, every
raw value Xij is transformed using the formula:
Vij =

(

(ni − 1.5)ni(Xij − X̄i)
2 − 0.5S2

i (ni − 1)
)

/ ((ni − 1)(ni − 2)) .

After this transformation the mean of V-values will be equal to the vari-

ance for original values, that is V̄i =

(

ni
∑

j=1

Vij

)

/ni = S2
i .

The O’Brien test statistic will be the F -value computed applying the usual
ANOVA procedure on the transformed values Vij . If the null hypothesis of
equal variances is true, the test statistic has approximately the Fk−1,N−k-
distribution.

2 Design of simulation study

All tests described above were compared in terms of robustness and power
using Monte Carlo studies. The tests studied were (1) F -test, (2) Bartlett’s,
(3) Cochran’s, (4) Hartley’s (F -max), (5) Levene’s, (6) modified Levene’s,
(7) Neyman-Pearson’s, (8) Z-variance, (9) Overall-Woodward modified Z-
variance and (10) O’Brien tests.
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To know how the form of sample distribution influences the performance
of tests we have taken five types of distributions of various forms: (1) normal,
(2) leptokurtic, (3) platykurtic, (4) moderately skewed and (5) highly skewed.

We have used the exponential family of distributions with the density

De(θ0) = f(x; θ0, θ1, θ2) = θ0/ (2θ1Γ (1/θ0)) exp
(

− (|x− θ2|/θ1)
θ0
)

to ap-

proximate symmetric distributions. The Laplace distribution (De(1)) and
the distribution with θ0 = 3 (De(3)) were taken as leptokurtic and platykur-
tic distributions respectively.

The chi-squared distributions with 6 and 3 degrees of freedom (χ2
6 and χ

2
3)

have been chosen for moderately and highly skewed distributions respectively.
To investigate statistics distributions, to calculate percentage points and

to estimate the power of tests we used statistical simulation methods and the
software developed. Each test statistic was computed 1 000 000 times. Such
a value gives a simulation accuracy of 0.001.

To estimate the tests power, we need to simulate statisitics distribu-
tion when the alternative hypothesis H1 is true. For this purpose we set
several competing hypotheses by manipulating the value of the parameter
r = σ2

max/σ
2
min. The larger r is, the more the corresponding populations

depart from the hypothesis of equal variances, i.e. the distance between
competing hypotheses is larger. A smaller distance makes it more difficult
to detect differences in variances. We have considered different distances be-
tween competing hypotheses: small (r = 1.1), moderate (r = 1.2) and large
(r = 1.5). According to Wludyka and Nelson[13] three basic variance config-
urations were studied: (1) k−1 variances are equal, the last variance is larger,
(2) k− 1 variances are equal, the last variance is smaller, (3) k− 2 variances
are equal, the first variance is smaller and the last variance is larger.

3 Simulation study results

The study of classical tests power has shown that F -test, Z-variance, Bartlett’s,
Cochran’s, Hartley’s, Neyman-Pearson’s and O’Brien tests have equal and
the highest power for two normal samples while the power of Levene’s test is
much less. This is also true for platykurtic distributions. But for leptokurtic
and skewed distributions Levene’s test is more powerful than the other pro-
cedures. Furthermore, the modified Levene’s test outperformed the original
test in this case.

Bartlett’s, Cochran’s, Hartley’s, Levene’s, Neyman-Pearson’s, O’Brien,
Z-variance and modified Z-variance tests can be applied when the number
of samples k > 2. In such situations the power of these tests is different. If
the normality assumption is true, these tests can be ordered according to the
power decrease in the following way:

Cochran’s ≻ O’Brien ≻ Z-variance ≻ Bartlett’s, Neyman-Pearson’s ≻
modified Z-variance ≻ Hartley’s ≻ Levene’s, modified Levene’s.
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The tests preference remains the same for platykurtic distributions. When
samples are from leptokurtic or skewed distributions, this preference order
changes. Now Levene’s test has a greater power with the modified Levene’s
test being more powerful than the original one.

It has been mentioned earlier that Cochran’s test is the best method to
detect cases when the variance of one of the groups is much larger than that
of the other groups (configuration (1) in this study). However, if the variance
configuration differs from the aforenamed one, the power of Cochran’s test
decreases significantly. So, in such situations we should prefer O’Brien, Z-
variance, Bartlett’s or Neyman-Pearson’s tests.

Based on the results obtained we have chosen Cochran’s test and have
compiled tables of upper percentage points for some non-normal symmetric
distributions. These values can be used in situations when distribution from
exponential family De(θ0) with the appropriate parameter θ0 is a good model
for observable random variables.

The study of tests robustness has shown that Levene’s, modified Levene’s,
Overall-Woodward modified Z-variance and O’Brien tests are the best ones.

Let us formulate recommendations on choosing the appropriate test for
comparing variances taking into account all results obtained:

• If there is every reason to consider data distribution as symmetric with
excess kurtosis equal or less than zero, i.e. mesokurtic or platykurtic,
the best choice will be O’Brien or Z-variance tests. Here Cochran’s test

could be recommended only for situations when one variance is larger
than others;

• If the data distribution is leptokurtic (excess kurtosis is positive, tails are
heavy) or skewed, modified Levene’s test should be chosen.

4 Software for testing hypotheses

It is impossible to develop distribution models for all distributions and sample
sizes. So, we have developed the software that allows us to correctly apply
tests for comparing variances when samples are from any distributions. We
can choose any distribution from the list and simulate a distribution of the
statistic. Also, we can set a required accuracy of simulation by defining the
size of a statistics sample. Then a p-value is calculated using a simulated
empirical distribution.

The simulation process is done using parallel computing, so the speed of
simulation depends on the number of CPU cores and the required accuracy.
It can be claimed that it takes not much time to make a correct decision when
testing the hypothesis of equal variances.

Tables of critical values for Cochran’s test and the latest version of the
software can be obtained from the authors upon request.
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