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Abstract

The properties of various parametric and nonparametric tests are studied
using methods of statistical simulation. Such tests are designed to test hypothe-
ses for randomness or absence of a trend in dispersion characteristics. Statistics
distributions and the test powers are studied with respect to various competitive
laws. Advantages and disadvantages of the studied tests are noted.

The procedure of interactive simulation of distributions of the test statistics
is proposed and implemented. Such procedure allows making valid conclusions
when using the test in the case of violation of standard assumptions.

Keywords: trend, hypothesis of randomness, statistical simulation, test
power.

Introduction

A variety of parametric and nonparametric tests has been proposed at di�erent times
to test the hypothesis for randomness or absence of a trend in the mathematical
expectation and in the dispersion characteristics. However, available sources do not
allow us to judge the bene�ts of a particular test and do not contain any distinct
recommendations on the area of application and prerequisites providing correctness
of statistical conclusions when using the tests under consideration.

As a rule, assumption of normal distribution law of noise is the main prerequisite
for ensuring the correct application of parametric tests, but it is not always realized
in practice. The usage of nonparametric tests is based on asymptotic distribution of
statistics of such tests. For limited sample sizes, the distributions of statistics of para-
metric and non-parametric tests may di�er signi�cantly from the corresponding limit
distributions of statistics used for testing the hypothesis. The common disadvantage
of nonparametric tests is an apparent discreteness of the statistics distribution. In
such situations, the usage of the limiting (asymptotic) distribution of the statistics
instead of the actual distribution of such statistics to test the hypothesis may lead to
wrong conclusion.

In this paper, the methods of statistical simulation are used to investigate the
statistic distributions and the power of tests for an absence of trend in a mathematical
expectation, as well as the dispersion characteristics of the observed random variables.

When testing the absence of a trend in the mathematical expectation, it is as-
sumed that time series of values x1, x2, ...xn of mutually independent random variables
with mathematical expectations m1,m2, ...mn and equal (but unknown) variances are
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observed. The hypothesis H0 : mi = m, i = 1, 2, ..., n is tested that all sample values
belong to the same population with mean m, against a competitive hypothesis about
the presence of a trend Hj : |mi+1 −mi| > 0, i = 1, 2, ..., n− 1.

When testing the absence of a trend in dispersion characteristics, the hypothesis
H0 : si = s, i = 1, 2, ..., n is tested that all sample values belong to the same popula-
tion with standard deviation s, against a competitive hypothesis for the presence of
a trend Hl : |si+1 − si| > 0, i = 1, 2, ..., n− 1.

When testing the absence of a variance shift (in dispersion characteristics) the
hypothesis H0 : s2

1 = ... = s2
n = s2

0 (s
2
0 being unknown) is tested against a competitive

hypothesis

Hl : s2
1 = s2

2 = ... = s2
k = s2

0; s2
k+1 = ... = s2

n = s2
0 + d; (d > 0),

for variance value changes in some unknown point (k unknown 1 ≤ k ≤ n− 1).

1 Tests for an absence of trend in mathematical

expectation research results

We have carried out the research of statistics distribution and the powers of para-
metric tests, which are used for testing the hypotheses of a trend absence in math-
ematical expectation (Autocorrelation test [1], Autocorrelation test modi�cation [1],
Dufor-Roy test [2], Ljung-Box test [3], Moran test [4], Wald-Wolfowitz test [5]), as
well as non-parametric tests used for the same purposes (Wald-Wolfowitz rank test
[5], Dufor-Roy rank test [2], Bartels test [6], Foster-Stewart test [7], Cox-Stuart test
[8], Hollin test [16], Wald-Wolfowitz series test [5], Inversion test [9], Cumulative sum
test [10, 11], series Wald-Wolfowitz test [5], series Ramachandran-Ranganathan test
[12] and number of sign series of the �rst-order di�erences [13]).

The results of such research are brie�y summarized in Table 1. The tests studied
are arranged in the order of power decreasing. Table 1 shows main advantages and
disadvantages of tests, noted during the research.

2 Tests for an absence of trend in dispersion

characteristics

Statistical distributions and powers of non-parametric tests (Foster-Stewart test [7],
Cox-Stuart test [8], Savage test [14, 12], Klotz test [14, 12])and parametric test (Hsu
test [15]) which are used to test an absence of trend in dispersion characteristics, are
studied here in more detail.

2.1 Foster-Stuart test

This nonparametric test can be used to test hypotheses of absence of a trend in the
mean values or in the variances (dispersion characteristics) depending on the used
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statistics type. The test for an absence of trend in distribution characteristics is given
by [7]:

S =
n∑
i=2

Si, (1)

where Si = ui + li ;

ui = 1, if xi > xi−1, xi−2, ...x1, otherwise ui = 0;

li = 1, if xi < xi−1, xi−2, ...x1, otherwise li = 0.

It is clear that 0 ≤ S ≤ n− 1.

In the absence of a trend the normalized statistics

t̃ =
S − µ
σ̂S

, (2)

where

µ = 2
∑n

i=2
1
i
, σ̂S =

√
µ− 4

∑n
i=2

1
i2
≈
√

2 lnn− 3.4253,

are approximately described by Student's distribution with ν = n degrees of freedom.
The hypothesis of absence of a trend is rejected at large modulus values of statistics
(2).

Actually, the area of discrete values is the range of de�nition of t̃ statistics. The
analysis of statistics distributions shows that even with relatively large sample sizes
(around n = 100, 200) the discrete distributions of test statistics are signi�cantly
di�erent from the Student distribution with n degrees of freedom [17, 18]. It follows
that the use of achieved signi�cance level (p-value) for calculations instead of the
actual (discrete) distributions of statistics of asymptotic Student t-distributions can
lead to serious errors.

2.2 Cox-Stuart test

Cox-Stuart test [8] for the hypothesis of an absence of a trend in variance (in disper-
sion characteristics) is designed as follows.

Initial sample x1, x2, ...xn is divided into [n/k] subsamples with k number of el-
ements x1, ..., xk;xk+1...x2k;x2k+1...x3k; ...;xn−k+1...xn (if n is not divided by k, then
the required number of measurements in the center is dropped out). For every ith
subsample the range wi is found ((1 ≤ i ≤ r, r = [n/k])). Then, the resulting se-
quence of ranges is tested against the trend in the mean values using the test with
statistics

S∗1 =
S1 − E[S1]√

D[S1]
, (3)

where

S1 =
∑[n/2]

i=1 (n− 2i+ 1)hi,n−i+1, E[S1] = n2

8
, D[S1] = n(n2−1)

24
,
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where hi,j = 1, if xi > xj and hi,j = 0, if xi ≤ xj(i < j). If the hypothesis for the
absence of a trend is true, distribution (3) can be approximately described by the
standard normal law.

It is recommended to choose the value of k in [8] according to the following
correlations:

n ≥ 90→ k = 5; 64 ≤ n < 90→ k = 4;
48 ≤ n < 64→ k = 3;n < 48→ k = 2.

The discreteness of the S∗1 statistics distribution upon detection of a trend in
the variance is signi�cantly higher than the discreteness of the Cox-Stuart statistics
distribution for trend in mean. This is natural because the analyzed range sample
contains only [n/k] number of elements. When using the Cox-Stuart test for detection
of a trend in the dispersion, the di�erence of statistics discrete distribution from the
standard normal law can almost be neglected only for n > 170 [19].

2.3 Hsu test for an absence of variance shift and shift

point detecting

Under this test the rejection of the hypothesis of randomness (for absence of a trend)
can show the discovery of a variance shift. Hsu test statistics are given by [15]

H =

∑n
i=1 (i− 1)(xi −mx)

2

(n− 1)
∑n

i=1 (xi −mx)2
, 0 ≤ H ≤ 1, (4)

where mx is median of variation series. Under the assumption that the mathematical
expectation of a sequence of random variables has the same value, the hypothesis
of a constant variances is tested. As a competitive hypothesis, the change in the
dispersion of observed values at some (unknown) time (starting from some element
of the sample) can be considered. The test is two-sided: the tested hypothesis of
absence of a variance shift is rejected for small and large values of the statistics (4).

Usually the test is used in a normalized form

H∗ =
H − 1/2√
D[H]

, whereD[H] =
n+ 1

6(n− 1)(n+ 2)
. (5)

Under the validity of the hypothesis of the absence of variance changes, statistic
(5) obeys the standard normal law asymptotically.

The simulation results [17] show that for n > 30 statistics distribution agrees well
with the standard normal law.

Statistics distribution (5) strongly depends on the law of distribution to which
random variables belong. The greatest deviation from the standard normal law is
observed in the case when random variables belong to the laws with heavy tails.
Asymmetry of the law signi�cantly a�ects the statis-tics distribution.

A test allowing to determine the change point of the variance (in the case when
observations belong to the normal law) is proposed in [15] of this test are presented
as follows. Let for k = 1, 2, ..., n− 1
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wk =
∑k

i=1 (xi −mx)
2,Wk = wn−wk

wk

k
n−k ,

where k corresponds to the required variance change point. If xi belongs to normal
law, then values of Wk, k = 1, 2, ..., n− 1, belong to corresponding Fn−k,k(W ) Fisher
distributions with n− k and k degrees of freedom.

Next, based on the corresponding distribution functions, we �nd γk = Fn−k,k(Wk),
where γk must obey to uniform law under the absence of variance shift.

G-test statistics are given by

G =
1

n− 1

n−1∑
k=1

γk, 0 ≤ G ≤ 1. (6)

The hypothesis about absence of variance changes is rejected with signi�cance
level α, if G < Gα/2 or G > G1−α/2. In this case value k corresponding to the
maximum value |γk − 1/2|, evaluates the desired change point of the variance value
in observed series. For x1 = mx value w1 = 0, thus W1 =∞ and γ1 = 1.

The type of limit distribution of the statistics (6) is not given in the original
material, only percentage points are given. Basing on the results of the statistical
simulations we have shown that a good model of the limit distribution of the statistics
(6) is a beta distribution of the 1st kind with the density of

f(x) = 1
θ2B(θ0,θ1)

(x−θ3
θ2

)θ0−1(1− x−θ3
θ2

)θ1−1

and parameter values θ0 = 2.7663, θ1 = 2.7663, θ2 = 1, θ3 = 0.
Based on this law we can �nd percentage points Gα/2 and G1−α/2 or p-values.
G-test is also a parametric test. Thus its statistics distributions depend strongly

on the type of the law under observation.

2.4 Klotz and Savage rank tests for an absence of

variance shifts

Rank tests for detecting the change of the scale parameter (dispersion characteristic)
in the unknown point are based on the usage of a family of rank statistics in form
[20]

SR =
n∑
i=1

ian(Ri), (7)

where Ri are ranks of sampled values in an ordered series of measurements.
Tests di�er by the used scores an . Their type determines the name of the test.

The following scores are commonly used:

� Klotz scores a1n(i) = U2
i/(n+1), where Uγ � is a γ-quantile of standard normal

law;

� Savage scores a2n(i) =
∑i

j=1
1

n−j+1
.
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If the tested hypothesis H0 is true, then tests with statistics SR,j =
∑n

i=1 iajn(Ri),
j = 1, 2 are free from the distribution and are symmetric with respect to E[SR,j] =
n+1

2

∑n
i=1 ajn(i).

Usually normalized tests with the following statistics are used

S∗R,j =
SR,j − E[SR,j]√

D[SR,j]
, (8)

where

E[SR,1] = n+1
2

∑n
i=1 U

2
i/(n+1), E[SR,2] = n(n+1)

2
;

D[SR,1] = n(n+1)
12

∑n
i=1 U

4
i/(n+1) −

1
3n+3

[E[SR,1]]2;

D[SR,2] = n(n+1)
12

(n−
∑n

j=1
1
j
.

Statistics (8) are approximately obeying the standard law. The convergence of the
statistics distributions to the standard law was studied in [16, 20].

Statistical simulation research of the distribution of statistics with Klotz scores
has shown that for n > 20 distribution is well-approximated by the standard normal
law. Distribution of the test statistics with Savage scores also matches well with the
standard normal law, but only for n > 30.

3 Analysis of the test powers

During analysis of test powers for the tests against variance change in an unknown
point hypotheses close to the H0 (in case of normal distribution of random variables)
were treated as competitive, when at some point the standard deviation was increased
by 5, 10, 15%:

H1 : σ2
1 = ...σ2

k = 1;σk+1
1 = ...σ2

n = 1.1025,
H2 : σ2

1 = ...σ2
k = 1;σk+1

1 = ...σ2
n = 1.21,

H3 : σ2
1 = ...σ2

k = 1;σk+1
1 = ...σ2

n = 1.3225,

where k = n/2. One competitive hypothesis was considered as more distant:

H4 : σ2
1 = ...σ2

k = 1;σk+1
1 = ...σ2

n = 4.

The presence of a linear trend in the dispersion characteristics of the observed
series of random variables (change in scale parameter) in the interval t ∈ [0, 1] can
be simulated according to

xi = ξi(1 + cti),

where c ∈ (−1,∞), ti = (i− 1)4 t,4 = 1/n. True tested hypothesis H0 corresponds
to parameter value c = 0.

In case of a periodic trend in the characteristics of dispersion, random values can
be simulated, for example, in accordance with the following formula:

xi = ξi(1 + d sin(2kπti)

for |d| < 1. In case of a combined trend it can be simulated according to

85



Monte Carlo method in problems of Applied Statistics

xi = ξi(1 + cti + d sin(2kπti)

for |d| < 1, if c ≥ 0, and for |d| < 1 + c, if c ∈ (−1, 0). The absence of a periodic
component of the trend corresponds to the parameter value d = 0, and the absence
of a linear component corresponds to c = 0.

During the analysis of power with respect to linear, periodic, and combined trend
in the dispersion characteristics (in variance) of a random variable in the interval
t ∈ [0, 1] the following competitive hypotheses were considered:

H5 : xi = ξi(1 + cti), c = 1; H6 : xi = ξi(1 + d sin(2kπti), d = 0.8, k = 2;
H7 : xi = ξi(1 + cti + d sin(2kπti), c = 1, d = 0.8, k = 2.

At that, ti = (i − 1)4 t,4t = 1/n, and random variables xi have been simulated
according to the normal law with parameters m and s.

In the course of work statistical simulation methods (for probabilities of errors
of the �rst kind α = 0.15, 0.1, 0.05, 0.01) provided estimations of the capacity of the
investigated criteria with respect to the competitive hypotheses H1, H2, H3 and H4

(corresponding to the shift of the dispersion value), and with respect to the com-
petitive hypotheses H5, H6, H7,corresponding to the presence of a linear or nonlinear
trend in the characteristics of the dispersion process.

In the columns of Table 2 tests are ordered by decreasing power 1− β according
to the power estimations with respect to studied competitive hypotheses with the
signi�cance level α = 0.1 and sample volume n = 100.

For similar competitive hypotheses criteria Hsu tests with H and G statistics as
well as Klotz test showed the highest power with respect to the analyzed sets of
competitive hypotheses. They showed the ability to detect trend in the dispersion
characteristics when it has a 10% increase. Hsu tests with H− and G−statistics
and Klotz test are also detecting the presence of a linear or periodic trend in the
dispersion characteristics (H0 is distinguished from the hypotheses H5, H6).At the
same time Cox-Stuart, Savage and Foster-Stuart tests can not detect the presence of
a periodic trend in the variance reliably (due to relatively low power against similar
enough hypothesis H6). Unfortunately, none of these tests has shown the ability to
detect a mixed trend in the dispersion corresponding to the studied hypothesis H7.
The power with respect to such close hypothesis has been extremely low.

Considered criteria can be placed in order of preference in the following way [22]:

Trend in mathematical expectation

K-inversion, Reversed inversion � Inversions� Cox-Stewart� Autocorrelation test
modi�cation� Ramachandran-Ranganathan � Wald-Wolfowitz, autocorrelation,

Dufour-Roy, Moran, Ljung-Box� Wald-Wolfowitz rank, Rank Dufour-Roy, Hollin�
Bartels � CUSUM � Series Wald-Wolfowitz test � Foster-Stewart � Number of

sign series of the �rst-order di�erences.

Trend in variance

HsuH − test � Klotztest � HsuG− test � Cox− Stewart �
Foster − Stewarttest � Savagetest.
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Conclusions

Thus, methods of statistical simulation have been used to study the statistics distri-
bution of various parametric and nonparametric tests for randomness and the absence
of a trend in the dispersion characteristics; within the framework of developing ISW
software an interactive study mode of the distributions of the statistics has been im-
plemented for the case of violation of standard assumptions. A comparative analysis
of test powers against some competitive hypotheses has been carried out, and results
of such analysis can be used to estimate the desirability of application of particular
test. Disadvantages of individual criteria have been noted.
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Table 1: Main advantages and disadvantages of used tests for an absence of trend in
mean

� Test Advantages Disadvantages

1 Inversion High power in respect to linear
trend. For n ≥ 30 discreteness
of normalized statistics can be
neglected.

The discreteness of normalized
statistics must be considered
for n < 30.

2 Reversed inversion

3 K-inversion

4 Cox-Stuart Power is above the average. For
n ≥ 40 discreteness of normal-
ized statistics can be neglected.

For n < 40 discreteness of nor-
malized statistics must be con-
sidered.

5 Autocorrelation
test modi�cation

Relatively good power. The di�erence of normalized
statistics distribution from the
standard normal law can be ne-
glected only for n ≥ 200

6 Ramachandran-
Ranganathan

Relatively good power. Statistics distribution have
strong dependence on n. Usage
of a table of critical values is
necessary.

7 Dufour-Roy The di�erence of normalized
statistics discrete distribution
from the standard normal law
can be neglected for n > 17.

Low power.

8 Autocorrelation The di�erence of normalized
statistics distribution from the
standard normal law can be ne-
glected for n > 30.

Low power.

9 Moran Low power. The di�erence of
statistics distribution from the
standard normal law can be ne-
glected only for n > 50.

10 Ljung-Box Low power. Statistics distribu-
tion converge very slowly to stan-
dard normal law.

11 Wald-Wolfowitz The di�erence of normalized
statistics distribution from the
standard normal law can be ne-
glected for sample sizes n > 20.

Low power.
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12 Hollin Average power. Distribution of the statistics de-
pends on n. The test is nonpara-
metric, yet distribution of the
statistics reacts to asymmetry of
the observed law.

13 Rank Wald-
Wolfowitz

Standard normal law can be used
for n > 10 as distribution of the
proposed modi�cation of normal-
ized statistics.

The power is slightly smaller
than one of Dufour-Roy and
Wald-Wolfowitz tests. Is equal
to rank Dufour-Roy test.

14 Rank Dufour-Roy For n > 17 distribution of the
statistics is well-approximated
by standard normal law. Dis-
creteness of statistics distribu-
tion can be neglected for n > 10.

The power is slightly smaller
than one of Dufour-Roy and
Wald-Wolfowitz tests. Is equal
to rank Wald-Wolfowitz test.

15 Bartels The di�erence of normalized
statistics discrete distribution
from the standard normal law
can be neglected for n > 10.

Low power.

16 Foster-Stuart High discreteness of statistics
distribution, persisting for hign
values of n. Usage of assymp-
totic Student tn-distribution for
evaluation of p-value leads to se-
rious errors. Power against lin-
ear trend is below the average.
Power against nonlinear trend is
low.

17 CUSUM Good power against linear trend. Statistics distribution is dis-
crete and it is dependent on n.
Very low power against nonlinear
trend.

18 Series Wald-
Wolfowitz

Normalized statistics distribu-
tion is discrete for a long time.
Low power.

19 Number of sign se-
ries of the �rst-
order di�erences

Normalized statistics distribu-
tion is discrete even for large
sample sizes.Extremely low
power.
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Table 2: Comparative analysis of powers of all tests for randomness and tests for an
absence of a trend in variances (n = 100, α = 0.1)

� Against H1 1− β Against H2 1− β Against H3 1− β
1 Hsu H 0.156 Hsu H 0.304 Hsu H 0.500
2 Klotz 0.151 Klotz 0.287 Klotz 0.469
3 Hsu G 0.147 Hsu G 0.269 Hsu G 0.430
4 Cox-Stuart 0.123 Cox-Stuart 0.188 Cox-Stuart 0.284
5 Savage 0.110 Foster-Stuart 0.130 Foster-Stuart 0.165
6 Foster-Stuart 0.106 Savage 0.129 Savage 0.159

� Against H4 1− β Against H5 1− β Against H6 1− β
1 Hsu H 1 Hsu H 0.836 Hsu H 0.711
2 Klotz 1 Hsu G 0.818 Klotz 0.678
3 Cox-Stuart 0.997 Klotz 0.807 Hsu G 0.545
4 Hsu G 0.993 Cox-Stuart 0.489 Savage 0.196
5 Foster-Stuart 0.625 Foster-Stuart 0.346 Cox-Stuart 0.143
6 Savage 0.610 Savage 0.246 Foster-Stuart 0.048

� Against H7 1− β
1 Hsu H 0.162
2 Klotz 0.104
3 Savage 0.095
4 Foster-Stuart 0.082
5 Hsu G 0.057
6 Cox-Stuart 0.052
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